A Decade of Progress in Acute Pancreatitis: Key Developments and Implications for Patient Care

Virtual CME Saturday Mercy Hospital of Buffalo Buffalo, NY September 25, 2021

Vikesh K. Singh, MD, MSc Professor of Medicine Director of Endoscopy, Johns Hopkins Hospital Director of Pancreatology Division of Gastroenterology Johns Hopkins Medical Institutions

DEDICATED TO THE **MEMORY** OF DR. NOSRAT **ALIDOOST** (1944 - 2019)AND HIS LIFELONG **FRIENDSHIP** WITH DR. **REZA SAMIE**

Conflicts of Interest

- Consultant to Abbvie
- Speaker for Nestle Health Science
- Advisory board participant for Envara
- Scientific advisory board for Kyttaro
- Grant funding from Abbvie, Orgenesis and Theraly

How do you diagnose acute pancreatitis?

Diagnosis

- 2 out of the following 3:
 - Characteristic abdominal pain
 - Amylase and/or lipase levels 3 times the upper limit of normal
 - Reference range can vary by institution:
 - Upper limit of normal lipase is 63 (JHH) and 393 (JHBMC)
 - Imaging demonstrating changes of acute pancreatitis
 - Early presentation CT may show normal pancreas

Serum Levels of Pancreatic Lipase and Amylase Peak at 6 Hours After Onset of Symptoms

Hours after onset

There are many nonpancreatic causes of amylase and lipase elevations

Amylase	Lipase
Acute pancreatitis	Acute pancreatitis
Pseudopancreatic cyst	Pseudopancreatic cyst
Chronic pancreatitis	Chronic pancreatitis
Pancreatic carcinoma	Pancreatic carcinoma
Biliary tract disease (cholecys-	Billiary tract disease (cho-
titis, cholangitis, choledo-	lecystitis, cholangitis, chole-
cholythiasis)	docholythiasis)
Intestinal occlusion/subocclu-	Intestinal occlusion/suboc-
sion	clusion
Intestinal ischemia	Intestinal ischemia
Intestinal perforation	Intestinal inflammatory di-
Acute appendicitis	sease
Ectopic pregnancy	Renal insufficiency
Renal insufficiency (<50 ml/min)	Alcohol abuse
Parathyroiditis	Nervous bulimia/anorexia
Macroamylasemia	Malignant neoplasia
Ovarian cyst/ovarian neoplasia	Hepatitis C
Lung carcinoma	
Diabetic ketoacidosis	
HIV infection	
Intracranial trauma	

Chart 1 - Causes of elevation of amylase and lipase serum levels

Adapted from: Forsmark CE, Baillie J; AGA Institute Clinical Practice and Economics Committee; AGA Institute Governing Board. AGA Institute technical review on acute pancreatitis.Gastroenterology. 2007;132(5):2022-44. Review.

HIV - Human immunodeficiency virus

REVIEW ARTICLE

Significant elevations of serum lipase not caused by pancreatitis: a systematic review

Ahmer M. Hameed¹, Vincent W. T. Lam^{1,2} & Henry C. Pleass^{1,2}

¹Department of Surgery, Westmead Hospital, Westmead, NSW, Australia and ²Discipline of Surgery, University of Sydney, Sydney, NSW, Australia

HPB (Oxford) 2015; 17: 99-112

Serum amylase and lipase and urinary trypsinogen and amylase for diagnosis of acute pancreatitis

Gianluca Rompianesi¹, Angus Hann², Oluyemi Komolafe³, Stephen P Pereira⁴, Brian R Davidson⁵, Kurinchi Selvan Gurusamy⁵

¹International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy. ²Royal Free Hospital, London, UK. ³University College London, London, UK. ⁴UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, London, UK. ⁵Department of Surgery, Royal Free Campus, UCL Medical School, London, UK

Cochrane Database Syst Rev 2017: 4: CD012010

LEADER 3—Lipase and Amylase Activity in Subjects With Type 2 Diabetes

Baseline Data From Over 9000 Subjects in the LEADER Trial

William M. Steinberg, MD,* Michael A. Nauck, MD,† Bernard Zinman, MD,‡ Gilbert H. Daniels, MD,§ Richard M. Bergenstal, MD, || Johannes F.E. Mann, MD,¶ Lasse Steen Ravn, MD, PhD,# Alan C. Moses, MD,# Mette Stockner, MD,# Florian M.M. Baeres, MD,# Steven P. Marso, MD,** and John B. Buse, MD, PhD†† on behalf of the LEADER Trial investigators

~25% of type 2 diabetics have amylase and/or lipase elevations in the absence of symptoms of acute pancreatitis

Pancreas 2014; 43: 1223-31

Amylase and Lipase Levels

- Only useful for <u>DIAGNOSING</u> acute pancreatitis
- Not useful for
 - Predicting severity of acute pancreatitis
 - Following response to treatment
 - Determining risk of complications

J Clin Gastroenterol 2002; 34: 459-62 Am J Gastroenterol 2002; 97: 1309-18

Lipase is Preferred over Amylase

Laboratory diagnosis of acute pancreatitis: in search of the Holy Grail

Giuseppe Lippi¹, Massimo Valentino², and Gianfranco Cervellin³

¹Diagnostica Ematochimica, Azienda Ospedaliero-Universitaria di Parma, Italy, ²Radiologia d'Urgenza, Azienda Ospedaliero-Universitaria di Parma, Italy, and ³Pronto Soccorso e Medicina d'Urgenza, Azienda Ospedaliero-Universitaria di Parma, Italy

	-		
	Preferred		
Organization/s	biomarker	Diagnostic threshold	Reference
Société Nationale Française de Gastro-Entérologie	Lipase	≥3 times the URL	[56]
Japanese Society of Emergency Abdominal Medicine	Lipase	Not set	[57]
British Society of Gastroenterology; Association of Surgeons of Great Britain and Ireland, Pancreatic Society of Great Britain and Ireland, Association of Upper GI Surgeons of Great Britain and Ireland	Lipase	Value interpreted according to the time since the onset of symptoms	[59]
American of Gastroenterology	Lipase	≥ 2 to ≥ 4 times the URL	[10]
American Gastroenterological Association	Lipase	≥3 times the URL	[60]
American of Family Physicians	Lipase	Not set	[61]
Japanese Ministry of Health, Labour, and Welfare	Lipase	Not set	[62]
Working Group of the Italian Association for the Study of the Pancreas	Lipase	Not set	[63]
URL, upper limit of the reference interval.			

An initiative of the ABIM Foundation

American Society for Clinical Pathology

American Society for Clinical Pathology

Twenty Things Physicians and Patients Should Question

Do not test for amylase in cases of suspected acute pancreatitis. Instead, test for lipase.

Amylase and lipase are digestive enzymes normally released from the acinar cells of the exocrine pancreas into the duodenum. Following injury to the pancreas, these enzymes are released into the circulation. While amylase is cleared in the urine, lipase is reabsorbed back into the circulation. In cases of acute pancreatitis, serum activity for both enzymes is greatly increased.

Serum lipase is now the preferred test due to its improved sensitivity, particularly in alcohol-induced pancreatitis. Its prolonged elevation creates a wider diagnostic window than amylase. In acute pancreatitis, amylase can rise rapidly within 3–6 hours of the onset of symptoms and may remain elevated for up to five days. Lipase, however, usually peaks at 24 hours with serum concentrations remaining elevated for 8–14 days. This means it is far more useful than amylase when the clinical presentation or testing has been delayed for more than 24 hours.

Current guidelines and recommendations indicate that lipase should be preferred over total and pancreatic amylase for the initial diagnosis of acute pancreatitis and that the assessment should not be repeated over time to monitor disease prognosis. Repeat testing should be considered only when the patient has signs and symptoms of persisting pancreatic or peripancreatic inflammation, blockage of the pancreatic duct or development of a pseudocyst. Testing both amylase and lipase is generally discouraged because it increases costs while only marginally improving diagnostic efficiency compared to either marker alone.

Basnayake C, Ratnam D. Blood test for acute pancreatitis. Aust Prescr. Aug 2015;38:128-30.

Lankisch PG, Burchard-Reckert S, Lehnick D. Underestimation of acute pancreatitis: patients with only a small increase in amylase/lipase levels can also have or develop severe acute pancreatitis. Gut. Apr 1999;44(4):542-4.

Lippi, G, Valentino, M, Cervellin G. Laboratory diagnosis of acute pancreatitis: in search of the Holy Grail. Crit Rev Clin Lab Sci. Jan - Feb 2012; 49(1)18-21.

Shafget MA, Brown TV, Sharma R. Nornal lipase drug-induced pancreatitis: a novel finding. Am J Emerg Med. Mar 2015; 33(3):476.e5-6.

Smith RC, Southwell-Keely J, Chesher D. Should serum pancreatic lipase replace serum amylase as a biomarker of acute pancreatitis? ANZ J Surg. Jun 2005;75(6):399-404.

Yadav D, Agarwal N, Pitchumondi CS. A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol. Jun 2002;97(6):1309-18.

Viel JF, Foucault P, Bureau F, Albert A, Drosdowsky MA. Combined diagnostic value of biochemical markers in acute pancreatitis. ClinChimActa. 1990;189(2):191-198.

13

Teachable Moment | LESS IS MORE

Unnecessary Repeat Enzyme Testing in Acute Pancreatitis A Teachable Moment

Adam Reisman, BS; Hyung J. Cho, MD; Horatio Holzer, MD

In summary, lipase levels are unhelpful in monitoring patients with acute pancreatitis, do not correlate with disease severity, and should not be routinely repeated after a diagnosis is confirmed. Standardized scores such as the SIRS score can aid in prognosis and can also be used to monitor patients with acute pancreatitis.

Avoid early and excessive crosssectional abdominal imaging

Imaging

- Increased utilization not associated with improved outcomes
- Early scan limitations
 - Don't pick up pancreatic necrosis
 - Infection uncommon in first week
- Reasons to obtain imaging
 - Clinical deterioration in first 72 hours
 - Unsure of diagnosis
 - Exclude alternative intraabdominal pathology

ORIGINAL ARTICLE

Early Abdominal Imaging Remains Over-Utilized in Acute Pancreatitis

David X. Jin¹ · Julia Y. McNabb-Baltar¹ · Shadeah L. Suleiman¹ · Bechien U. Wu² · Ramin Khorasani³ · Thomas L. Bollen⁴ · Peter A. Banks¹ · Vikesh K. Singh⁵

SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2018 VOL. 53, NO. 1, 88–93 https://doi.org/10.1080/00365521.2017.1383510

ORIGINAL ARTICLE

Persistent SIRS and acute fluid collections are associated with increased CT scanning in acute interstitial pancreatitis

Ayesha Kamal^a*, Mahya Faghih^a*, Robert A. Moran^a, Elham Afghani^a, Amitasha Sinha^a, Nasim Parsa^a, Martin A. Makary^b, Atif Zaheer^{c,d}, Elliot K. Fishman^d, Mouen A. Khashab^a, Anthony N. Kalloo^{a,c} and Vikesh K. Singh^{a,c}

^aDivision of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; ^bDivision of Surgical Oncology, Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA; ^cPancreatitis Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; ^dDepartment of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA;

Check for updates

What is Severe Acute Pancreatitis?

What has a Greater Impact on Mortality?: Persistent Organ Failure or Infected Pancreatic Necrosis

Organ Failure and Infection of Pancreatic Necrosis as Determinants of Mortality in Patients With Acute Pancreatitis

MAXIM S. PETROV, SATYANARAYAN SHANBHAG, MANDIRA CHAKRABORTY, ANTHONY R.J. PHILLIPS, and JOHN A. WINDSOR

Department of Surgery, The University of Auckland, Auckland, New Zealand

- Systematic review
- 14 studies between
 1993-2009 with 1,478
 patients with NP
- 179 out of 600 OF (±IPN) patients died (mortality 30%)
- 102 out of 314 IPN (±OF) patients died (mortality 32%)

Gastroenterology 2010; 139: 813-20

Conclusion

'In patients with acute pancreatitis, the absolute influence of OF and IPN on mortality is comparable and thus the presence of either indicates severe disease. The relative risk of mortality doubles when OF and IPN are both present and indicates extremely severe disease or critical acute pancreatitis'

Persistent Organ Faliure and/or Infected Necrosis Define Severe Acute Pancreatitis

Classification	Criteria		
Atlanta Classification 1992			
Mild	No organ failure and no local complications		
Severe	Organ failure and/or local complications		
Revised Atlanta Classification 2007 (published 2013)			
Mild	No organ failure and no local or systemic complications		
Moderate	Transient organ failure and/or local complications		
Severe	Persistent organ failure		
Determinant-Based Classification 2012			
Mild	No (peri)pancreatic necrosis and no organ failure		
Moderate	Sterile necrosis and/or transient organ failure		
Severe	Infected necrosis or persistent organ failure		
Critical	Infected necrosis and persistent organ failure		

Arch Surg 1993; 128: 586-90. Gut 2013; 62: 102-11. Ann Surg 2012; 256: 875-80

Persistent Organ Failure Greater Impact on Mortality than Infected Necrosis

High Mortality Associated with Persistent Organ Failure in Multivariable Analyses of Large Prospective Studies

- 447 patients with NP between 2009-2012
- Mortality was 13% overall, 15% sterile necrosis and 18% infected necrosis
- Adjusted OR for mortality:
 - POF 16.7
 - ASA class 3.56,
 - Bacteremia 2.76
 - Age 1.07

- 731 patients with AP, 154
 NP, 98 IPN between 2004-2007
- Overall mortality 8.3%
- Adjusted OR for mortality:
 POF 18
 - Bacteremia 3.42
 - Age 1.05

Guo Q et al. Ann Surg 2014; 259: 1201-07; Besselink MG et al. Br J Surg 2009; 96: 267-73

Infected Pancreatic Necrosis is Associated with No to Low Mortality in the Absence of Persistent Organ Failure

The Atlanta Classification, Revised Atlanta Classification, and Determinant-Based Classification of Acute Pancreatitis

Which Is Best at Stratifying Outcomes?

Vivek Kadiyala, MD,* Shadeah L. Suleiman, BS,* Julia McNabb-Baltar, MD,* Bechien U. Wu, MD, MPH,† Peter A. Banks, MD,* and Vikesh K. Singh, MD, MSc‡

	n	Mortality, n (%)
All patients, N	338	14 (4.1)
No OF*	255	0 (0)
Interstitial pancreatitis	242	0 (0)
Sterile necrosis	10	0 (0)
Infected necrosis	3	0 (0)
Transient OF*	40	3 (7.5) [†]
Interstitial pancreatitis	33	3 (9.1) [†]
Sterile necrosis	5	0 (0)
Infected necrosis	2	0 (0)
Persistent OF*	43	11 (25.6)
Interstitial pancreatitis	27	4 (14.8)
Sterile necrosis	14	6 (42.9)
Infected necrosis	2	1 (50.0)
Single system	27	2 (7.4) [‡]
Multisystem	16	9 (56.3) [‡]

Pancreas 2016; 45: 510-5

Primary and Secondary Organ Failures Cause Mortality Differentially in Acute Pancreatitis and Should be Distinguished

Rajesh Kumar Padhan, MD, DM,* Saransh Jain, MD, DM,* Samagra Agarwal, MBBS,* Suresh Harikrishnan, MD, DM,* Padmaprakash Vadiraja, MD, DM,* Sanatan Behera, MD, DM,* Sushil Kumar Jain, MD, DM,* Rajan Dhingra, MD, DM,* Nihar Ranjan Dash, MS,† Peush Sahni, MS, PhD,† and Pramod Kumar Garg, MD, DM*

	All Patients $(n = 614)$		Patients With IPN (n = 283)		
			OF Present n = 208		
	OF Present n = 274	OF Absent n = 340	Primary OF n = 111	Secondary OF n = 97	OF Absent n = 75
Mortality	39.4%*	0.08%*	49.5% ^{†‡}	36% ^{†‡}	4%‡
*D < 0.001 (C	E via no OE				

*P < 0.001 (OF vs no OF).

 $^{\dagger}P = 0.06$ (primary OF vs secondary OF).

*P < 0.001 (primary or secondary OF vs no OF).</p>

Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis

Nicolien J Schepers,¹ Olaf J Bakker,² Marc G Besselink,³ Usama Ahmed Ali,⁴ Thomas L Bollen,⁵ Hein G Gooszen,⁶ Hjalmar C van Santvoort,² Marco J Bruno,¹ for the Dutch Pancreatitis Study Group

- 639 patients with NP, 240 with OF (38%), 202 with IPN (32%)
- Mortality did not change based on time of onset and duration of persistent organ failure
- Mortality of OF alone was 44% (47/108), OF + IPN was 29% (38/132) and IPN without OF was 4% (3/70)
- Adjusting for age, sex, ASA class and CTSI:
 - HR for mortality was 1.9 (1.0, 3.5) for OF alone versus OF
 +IPN
 - HR for mortality was 17.9 (3.8,38.7) for OF + IPN versus IPN alone

Gut 2019; 68: 1044-51

What is Predicted Severe Acute Pancreatitis?

Clinical Prognostic Scoring Systems

Clinical Score	First Validation Study, Year (Reference)	Country	Outcomes Predicted in the First Validation Study
Ranson score/criteria	Ranson et al, 1974 (5); Ranson and Pasternack, 1977 (6)	United States	Severity (death, ≥7 d in the intensive care unit)
Glasgow score/criteria	Blamey et al, 1984 (7)	United Kingdom	Severity (mortality, surgery, complications)
Simplified prognostic criteria	Agarwal and Pitchumoni, 1986 (8)	United States	Severity (complications)
APACHE II	Wilson et al, 1990 (9) Larvin and McMahon, 1989 (10)	United Kingdom	Severity, mortality
Japanese Severity Score (original)	Ogawa et al, 2002 (11)	Japan	Mortality
Logistic Organ Dysfunction Score	Halonen et al, 2002 (12)	Finland	Mortality
Multiple Organ Dysfunction Score	Halonen et al, 2002 (12)	Finland	Mortality
SOFA	Halonen et al, 2002 (12)	Finland	Mortality
SIRS score	Ogawa et al, 2002 (11)	Japan	Mortality, severity (Multiple Organ Dysfunction Score)
	Buter et al, 2002 (13)	United Kingdom	Mortality, severity (Multiple Organ Dysfunction Score)
APACHE III	Liu et al, 2003 (14)	United States	Mortality
BALI score	Spizer et al, 2006 (15)	United States	Mortality
Early Warning Score	Garcea et al, 2006 (16)	United Kingdom	Mortality, severity (Atlanta criteria)
Mortality Probability Model	Göçmen et al, 2007 (17)	Turkey	Mortality, severity (Atlanta criteria)
Panc 3 score	Brown et al, 2007 (18)	United States	Severity (Atlanta criteria)
Pancreatitis Outcome Prediction Score	Harrison et al, 2007 (19)	United Kingdom	Mortality
Simple Prognostic Score	Ueda et al, 2007 (20)	Japan	Mortality, severity (infection, organ failure)
SAPS	Göçmen et al, 2007 (17)	Turkey	Mortality, severity (Atlanta criteria)
BISAP	Wu et al, 2008 (4)	United States	Mortality
Harmless Acute Pancreatitis Score	Lankisch et al, 2009 (21)	Germany	Severity (necrosis, need for ventilation or dialysis, death)
Japanese Severity Score (revised)	Ueda et al, 2009 (22)	Japan	Mortality

APACHE = Acute Physiology and Chronic Health Evaluation; BISAP = Bedside Index of Severity in Acute Pancreatitis; SAPS = Simplified Acute Physiology Score; SOFA = Sequential Organ Failure Assessment; SIRS = Systemic Inflammatory Response Syndrome.

Di Meng-Yang et al. Ann Intern Med 2016; 165: 482-90

Predicted Severe Acute Pancreatitis Usually Ends up not being Severe Acute Pancreatitis!

Comparison of Existing Clinical Scoring Systems to Predict Persistent Organ Failure in Patients With Acute Pancreatitis

RAWAD MOUNZER,* CHRISTOPHER J. LANGMEAD,[‡] BECHIEN U. WU,[§] ANNA C. EVANS,* FARAZ BISHEHSARI,* VENKATA MUDDANA,* VIKESH K. SINGH,[§] ADAM SLIVKA,* DAVID C. WHITCOMB,* DHIRAJ YADAV,* PETER A. BANKS,[§] and GEORGIOS I. PAPACHRISTOU^{*,II}

*Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; [‡]Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania; [§]Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; and ^{II}Division of Gastroenterology and Hepatology, Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania

	NPV	PPV
TRAINING COHORT (N=256)	85-95%	32-70%
VALIDATION COHORT (N=397)	94-99%	11-23%

Fluid Resuscitation

Aggressive Fluid Resuscitation Universally Recommended

Author	Journal	Initial fluid recommendation
IAP/APA	Pancreatology 2013	5-10 cc/kg/hr
Pandol S et al	Gastroenterology 2007	Severe: 500-1000cc/hr Moderate: 300-500 cc/hr Mild: 250-350 cc/hr
Forsmark C and Baillie J	Gastroenterology 2007	Vigorous fluid resuscitation Urine output >0.5ml/kg/hr
Whitcomb DC	N Engl J Med 2006	Fluid bolus to achieve hemodynamic stability + 250-500 ml/hr crystalloid
Banks PA and Freeman ML	Am J Gastroenterol 2006	Aggressive IV fluid
Vege SS et al	JAMA 2004	Aggressive fluid resuscitation
Tenner S	Am J Gastroenterol, 2004	At least 250-300 cc/h for 48 hr

Fluid Resuscitation

Ourrent evidence: effects on outcome of aggressive fluid resuscitation (first 24-72 hours)

Improved outcome

Detrimental outcome

Brown 2002 Gardner 2009 Wall 2011 Warndorf 2011

Eckerwall 2006 Mao 2007 Mao 2009 Mao 2010 de-Madaria 2011

Haydock et al. Ann Surg 2013

What are the Problems with Studies evaluating Fluid Therapy?

Fluid Study Flaw: Cause and Effect

Studies evaluating fluid resuscitation in the first 24-72 hours after admission, impossible to distinguish between:

Fluid Therapy in AP: Are we Missing the Therapeutic Window?

Norman J, Am J Surg, 1998
Fluid Therapy Does not Fix Capillary Leak

What is the best evidence for fluid therapy in 2021?

Lactated Ringer's Solution Reduces Systemic Inflammation Compared With Saline in Patients With Acute Pancreatitis

BECHIEN U. WU,* JAMES Q. HWANG,[‡] TIMOTHY H. GARDNER,[§] KATHRYN REPAS,* RYAN DELEE,[§] SONG YU,* BENJAMIN SMITH,[∥] PETER A. BANKS,* and DARWIN L. CONWELL*

*Center for Pancreatic Disease, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and *Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts; [§]Division of Gastroenterology, Mary Hitchcock Memorial Hospital, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; and ^{II}Gastroenterology at Faulkner Hospital, Faulkner Hospital, Jamaica Plain, Massachusetts

Clin Gastroenterol Hepatol 2011; 9: 710-17

Primary Endpoint: n=40 LR reduced SIRS at 24 hours

Two-way anova

Secondary Endpoint: LR had lower CRP at 24 hours

Two-way ANOVA

Fluid resuscitation with lactated Ringer's solution vs normal saline in acute pancreatitis: A triple-blind, randomized, controlled trial

Enrique de-Madaria¹, Iván Herrera-Marante¹, Verónica González-Camacho², Laia Bonjoch³, Noé Quesada-Vázquez¹, Isabel Almenta-Saavedra¹, Cayetano Miralles-Maciá¹, Nelly G Acevedo-Piedra¹, Manuela Roger-Ibáñez¹, Claudia Sánchez-Marin¹, Rosa Osuna-Ligero¹, Ángel Gracia⁴, Pere Llorens², Pedro Zapater⁵, Vikesh K Singh⁶, Rocío Moreu-Martín⁵ and Daniel Closa³

Time from randomization	Variable	Normal Saline	Lactated Ringer's solution	p
Basal	SIRSc	14 (66.7%)	9 (47.4%)	0.218
24 hours	SIRSn SIRSc	2 (1-2) 4 (19%)	1 (1-2) 4 (21.1%)	0.181 0.874
	SIRSn	1 (1-1)	0 (0-1)	0.147
48 hours	SIRSc	9 (42.9%) 1 (1-2)	3 (15.8%) 1 (0-1)	0.062
72 hours	SIRSc	7 (33.3%)	3 (15.8%)	0.281
	SIRSn	1 (1-2)	0 (0-1)	0.064

Normal Saline Lactated Ringer's

- pH 5.5
- 154 mEq Na
- 154 mEq Cl

- pH 6.5
- 130 mEq Na
- <u>109 mEq Cl</u>
- 28 mEq lactate
- 4 mEq K
- 3 mEq Ca

Lactated Ringer's does not Change pH but Inhibits Macrophages

United Eur Gastroenterol J 2018; 6: 63-72

Early Aggressive Hydration Hastens Clinical Improvement in Mild Acute Pancreatitis

James L. Buxbaum, MD¹, Michael Quezada, MD¹, Ben Da, MD¹, Niraj Jani, MD¹, Christianne Lane, PhD², Didi Mwengela, MD¹, Thomas Kelley, MD¹, Paul Jhun, MD³, Kiran Dhanireddy, MD⁴ and Loren Laine, MD^{5,6}

	20 cc/kg bolus then 3 cc/kg/hr	10 cc/kg bolus then 1.5 c/kg/hr	
	Aggressive hydration (<i>N</i> =27)	Standard hydration (<i>N</i> =33)	Adjusted odds ratio (95% CI)
Clinical Improvement within 36h	19 (70%)	14 (42%)	7.0 (1.8–27.8)
Development of SIRS	4 (14.8%)	9 (27.3%)	0.14 (0.02–0.92)
Persistent SIRS	2 (7.4%)	7(21.2%)	0.12 (0.02–0.94)
Development of hemoconcentration	3 (11.1%)	12 (36.4%)	0.08 (0.01–0.49)

CI, confidence interval; SIRS, systemic inflammatory response syndrome.

Am J Gastroenterol 2017; 112: 797-803

Total Volume Administered in a Hypothetical 70 Kg Patient

FLUID STRATEGY	WEIGHT	FLUID TOTAL OVER 24 HOURS
AGGRESSIVE	70 KG	6.4 L
STANDARD	70 KG	3.2 L
MAINTENANCE	70 KG	2.5 L

Lactated Ringers vs Normal Saline Resuscitation for Mild Acute Pancreatitis: A Randomized Trial

Alice Lee,^{1,2} Christopher Ko,¹ Carlos Buitrago,¹ Brent Hiramoto,¹ Liam Hilson,¹ and James Buxbaum,¹ on behalf of the NS-LR Study Group

¹Department of Internal Medicine, Division of Gastroenterology, University of Southern California Keck School of Medicine, Los Angeles, California; and ²Center for Center for Pancreatic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

	NS (n = 60) n (%)	LR (n = 61) n (%)	RR	Adjusted RR ^a
ICU admission	15 (25)		0.4 (0.2–0.9)	0.3 (0.1–0.9)
Moderate-severe pancreatitis	15 (25.0)	9 (14.8)	0.8 (0.4–1.4)	0.5 (0.2–1.1)
Local complications	9 (15)	4 (6.6)	0.4 (0.1–1.3)	0.3 (0.1–1.5)
Organ failure	9 (15)	7 (11.5)	0.8 (0.3–1.9)	1 (0.4–2.7)
Adverse events	0	1	—	_
Recurrent AP post-discharge	8 (13.1)	6 (10.0)	1.3 (0.5–3.6)	0.9 (0.4–2.0)
Hyperchloremia (Serum Cl > 108 mm/L) at 24 h	15 (25.4)	3 (5.6)	0.2 (0–0.6)	0.2 (0.1–0.6)
	NS (n = 60) n (%)	LR (n = 61) n (%)	RR	Adjusted RR ^b
SIRS 24 h	19 (32.2%)	21 (37.5%)	1.2 (0.7–1.9)	1.1 (0.7–1.6)
SIRS 48 h	18 (38.3%)	18 (41.9%)	1.1 (0.7–1.8)	1.0 (0.6–1.5)
SIRS 72 h	14 (32.6%)	11 (32.4%)	1.0 (0.5–1.9)	1.0 (0.5–1.8)
	NS Median (IQR)		LR Median (IQR)	P value
Length of hospitalization (d)	4.6 (3–7.4)		3.5 (2–5.9)	.049
Fluid administered in first 24 h following randomization (L)	5.8 (4.8–6.8)		6.0 (5.2–6.9)	.194

10 cc/kg bolus followed by 3 cc/hr

Gastroenterology 2021; 160: 955-57

ORIGINAL ARTICLE

Response and outcome from fluid resuscitation in acute pancreatitis A Prospective Cohort Study

Tao Jin^{1,2,1}, Kun Jiang^{1,1}, Lihui Deng¹, Jia Guo¹, Yuwan Wu¹, Zhengyan Wang¹, Na Shi¹, Xiaoxin Zhang¹, Ziqi Lin¹, Varsha Asrani³, Peter Jones⁴, Anubhav Mittal⁵, Anthony Phillips⁶, Robert Sutton², Wei Huang^{1,2}, Xiaonan Yang¹, Qing Xia¹ & John A. Windsor⁷

¹Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China, ²Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, UK, ³Department of Nutrition Service, Auckland City Hospital, Auckland, New Zealand, ⁴Emergency Department, Auckland City Hospital, Auckland, New Zealand, ⁵Department of Surgery, Royal North Shore Hospital, Sydney, Australia, ⁶Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, New Zealand, and ⁷Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

HPB (Oxford) 2018; 20: 1082-91

Urine output and mean arterial pressure were inadequate to assess which patients need more fluid

- Group 4 (compared to group 3) had higher rates of persistent OF, necrosis and infected necrosis, extrapancreatic infections, need for surgery, need for ICU and mortality
- Additional fluid therapy did not change outcome

Jin T et. al. HPB (Oxford) 2018; 20: 1082-91

NUTRITION

Try oral, if possible, first and this can be solid low fat, low residue. If patient does not tolerate, NG or NJ. Start as soon as possible but preferably within the first few days of hospitalization.

Distal Enteral Feeding and Acute Necrotizing Pancreatitis are Associated with Lowest Trypsin Secretion Rates

Does Route of Enteral Feeding in Severe Acute Pancreatitis Matter?

Eatock FC et al. Am J Gastroenterol 2005; 100: 432-9. Kumar A et al. J Clin Gastroenterol 2006; 40: 431-34. Singh N et al. Pancreas 2012; 41: 153-59

Gut Barrier Dysfunction in Severe Acute Pancreatitis

Decreased Microcirculation (Ischemic/Reperfusion Injury)

Increased Intestinal Permeability

Impaired Intestinal Motility (Enteric Bacterial Colonization and Overgrowth)

Ileus is a predictor of local infection in patients with acute necrotizing pancreatitis

Robert A. Moran ^{a, b}, Niloofar Y. Jalaly ^b, Ayesha Kamal ^b, Sandesh Rao ^c, Robert Klapheke ^c, Theodore W. James ^c, Swetha Kambhampati ^c, Martin A. Makary ^d, Kenzo Hirose ^d, Vivek Kumbhari ^b, Ellen M. Stein ^{a, b}, Mouen A. Khashab ^b, Anne Marie Lennon ^b, Anthony N. Kalloo ^{a, b}, Atif Zaheer ^{a, e}, Ruben Hernaez ^b, Vikesh K. Singh ^{a, b, *}

Pancreatology 2016; 16: 966-72

Nutrition in Severe Acute Pancreatitis

- Enteral nutrition is superior to parenteral nutrition
 - Preserves gut barrier which prevents bacterial translocation
 - Associated with less mortality, organ failure, and infection

Al-Omran M, et. al. Cochrane Databse Syst Rev 2010; 1: CD002837 Wu P, et. al. Bioscience Reports 2018; 1-9

Timing of Enteral Nutrition in Severe Acute Pancreatitis – the Earlier the Better!

- Meta-analysis of 10 studies, 1051 patients with predicted or actual severe acute pancreatitis
 - Initiation of enteral nutrition <48 hours associated with less systemic and local infection, mortality, multiple OF, and operative intervention
- RCT of 197 patients with predicted severe acute pancreatitis
 - Initiation of nasojejunal tube feeding <48 hours associated with less mortality, infected necrosis, respiratory failure, and ICU

Song J et al. Medicine 2018; 97: 34(e11871) Wereszczynska-Siemiatkowska U et al. Pancreas 2013; 42: 640-6.

Early versus On-Demand Nasoenteric Tube Feeding in Acute Pancreatitis

O.J. Bakker, S. van Brunschot, H.C. van Santvoort, M.G. Besselink, T.L. Bollen, M.A. Boermeester, C.H. Dejong, H. van Goor, K. Bosscha, U. Ahmed Ali, S. Bouwense, W.M. van Grevenstein, J. Heisterkamp, A.P. Houdijk, J.M. Jansen, T.M. Karsten, E.R. Manusama, V.B. Nieuwenhuijs, A.F. Schaapherder, G.P. van der Schelling, M.P. Schwartz, B.W.M. Spanier, A. Tan, J. Vecht, B.L. Weusten, B.J. Witteman, L.M. Akkermans, M.J. Bruno, M.G. Dijkgraaf, B. van Ramshorst, and H.G. Gooszen, for the Dutch Pancreatitis Study Group

> 208 patients APACHE II ≥8 or Imrie or modified Glasgow ≥3 or CRP >150 mg/L

101 patients Nasojejunal tube feeds within 24 hours 104 patients Oral diet within 72 hours with enteral tube feeding only if oral diet not tolerated

NEJM 2014; 37: 1983-93

Results

Table 2. Primary and Secondary End Points, According to the Intention-to-Treat Analysis.*						
Outcome	Early Tube Feeding (N=101)	On-Demand Tube Feeding (N=104)	Risk Ratio (95% CI)	P Value		
Primary composite end point: infection or death — no. (%)	30 (30)	28 (27)	1.07 (0.79–1.44)	0.76		
Secondary end points						
Infection — no. (%)†	25 (25)	27 (26)	0.97 (0.70-1.34)	0.87		
Infected pancreatic necrosis	9 (9)	15 (14)	0.74 (0.43-1.26)	0.28		
Bacteremia	17 (17)	18 (17)	0.98 (0.68-1.43)	1.00		
Pneumonia	12 (12)	13 (12)	0.97 (0.63-1.50)	1.00		
Death — no. (%)	11 (11)	7 (7)	1.27 (0.85–1.89)	0.33		
Necrotizing pancreatitis — no. (%)‡	64 (63)	65 (62)	1.06 (0.77–1.47)	0.76		
CT seventy index§	4±2	4±3	_	0.29		
ICU admission after randomization — no. (%)	18 (18)	20 (19)	0.95 (0.66–1.38)	0.86		
Mechanical ventilation — no. (%)	12 (12)	14 (13)	0.93 (0.60-1.44)	0.84		
New-onset organ failure — no./total no. at risk (%)¶						
Single organ failure	26/67 (39)	31/73 (42)	0.92 (0.65-1.32)	0.73		
Persistent single organ failure	10/67 (15)	10/73 (14)	1.05 (0.65-1.70)	1.00		
Multiple organ failure	7/67 (10)	6/73 (8)	1.14 (0.67–1.95)	0.77		
Persistent multiple organ failure	4/67 (6)	4/73 (5)	1.05 (0.51–2.14)	1.00		

Bakker OJ et al. NEJM 2014; 37: 1983-93

Severe acute pancreatitis: capillary permeability model linking systemic inflammation to multiorgan failure

Nicole L. Komara,^{1*} Pedram Paragomi,^{1*} Phil J. Greer,¹ Anette S. Wilson,¹ Cameron Breze,² Georgios I. Papachristou,¹ and ⁽ⁱ⁾ David C. Whitcomb^{1,3,4}

¹Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; ²Ariel Precision Medicine, Pittsburgh, Pennsylvania; ³Departments of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and ⁴Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania

Enteral nutrition may maintain plasma oncotic pressure by preventing loss of albumin and non-albumin plasma protein and thereby prevent organ failure

No role for prophylactic antibiotics

Extrapancreatic Infections are seen in 25% of Patients with Acute Pancreatitis

Besselink MG et al. Br J Surg 2009; 96: 267-73

Syndrome (SIRS)

- SIRS is very common
 - 20-60% of AP patients have SIRS on presentation
 - 18-30% of AP patients develop persistent (>48 hours) SIRS
- SIRS due to infection cannot be differentiated from SIRS due to acute pancreatitis

Jin T et al. HPB (Oxford) 2018; 20: 1082-91 Wu BU et al. Clin Gastroenterol Hepatol 2011; 9: 710-17 Sharma D et al. Dig Dis Sci 2017; 62: 3468-478 Grover AS et al. Pancreas 2017; 46: 106-9 Singh VK et al. Clin Gastroenterol Hepatol 2009; 7: 1247-51

Prophylactic Antibiotics for Pancreatic Necrosis: Findings Related to Study Quality

de Vries AC, et. al. Pancreatology 2007; 7: 531-8

Early (<4 weeks) open surgical and endoscopic necrosectomy is associated with increased mortality. Try to delay intervention as long as possible to allow for the development of walled off necrosis at which time endoscopy or minimally invasive surgery can be used for treatment. If early (<4 weeks) intervention is required, only percutaneous drain should be used.

Association between Time of Surgical Intervention (from initial admission) for Necrotizing Pancreatitis and Mortality

Besselink MG et al. Arch Surg 2007;142:1194-1201.

Early (<4 Weeks) Versus Standard (\geq 4 Weeks) Endoscopically Centered Step-Up Interventions for Necrotizing Pancreatitis

Guru Trikudanathan, MD¹, Pierre Tawfik, MD², Stuart K. Amateau, MD, PhD¹, Satish Munigala, MBBS, MPH³, Mustafa Arain, MD¹, Rajeev Attam, MD¹, Gregory Beilman, MD⁴, Siobhan Flanagan, MD⁵, Martin L. Freeman, MD¹ and Shawn Mallery, MD¹

Outcomes	NP patients with interven- tions $<$ 4 weeks (usually ANC collections) ($n=$ 76)	NP patients with interven- tions \geq 4 weeks (usually WON collections) (n =117)	p value
Mortality (%)	10 (13.2%)	5 (4.3%)	0.024
Morbidity (%)			
^a Median length of stay in days (IQR)	37 (27–61)	26 (0–207)	<0.001
^b Median length of ICU stay in days (IQR)	2.5 (0–22)	0 (0–3)	<0.001
Complications (procedure and disease related)			
Stent occlusion and infection	30(40%)	39(33%)	0.36
Bleeding	8 (10.5%)	12 (10.3%)	0.95
Perforation	0	7 (6.0%)	0.044
Fistulae (including pancreatic-, cyst-, or entero-cutaneous	25 (32.9%)	24 (20.5%)	0.054
New-onset diabetes	15 (19.7%)	25 (21.4%)	0.785

Mortality was significantly higher in patients undergoing early endoscopy (<4 weeks) for an acute necrotic collection

Am J Gastroenterol. 2018; 113: 1550-58

Evolution of Acute Necrotic Collection into Walled-Off Necrosis

Day 1Day 7Day 28

Efficacy of Conservative Treatment, Without Necrosectomy, for Infected Pancreatic Necrosis: A Systematic Review and Meta-analysis

VENIGALLA PRATAP MOULI,¹ VISHNUBHATLA SREENIVAS,² and PRAMOD KUMAR GARG¹

¹Department of Gastroenterology and ²Biostatistics, All India Institute of Medical Sciences, New Delhi, India

	No. of patients with IPN on primary conservative	Patients undergoing percutaneous	Successful	Need for	Hospital stay (median/ mean ± SD ^b .	
Gr 64	4% of pat	ients cai	n be m	anage	d using	
	conserva	tive ther	apy (a	ntibioti	cs +/-	
	p	ercutane	eous d	rain)		
Gluck et al ³⁶	20	100 (20/20)	70 (14/20)	15 (3/20)	54	15 (3/20)
Alsfasser et al ³⁷	20	50 (10/20)	65 (13/20)	30 (6/20)	NR	5 (1/20)
Group B						
Freeny et al ³⁸	34	100	47.1 (16/34)	52.9 (18/34)	45	11.8 (4/34)
Navalho et al ³⁹	30	100	63.3 (19/30)	33.3 (10/30)	24	16.6 (5/30)
Bruennler et al ⁴⁰	80	100	47.5 (38/80)	20 (16/80)	51	33.8 (27/80)
Mortelé et al ⁴¹	13	100	46.2 (6/13)	53.8 (7/13)	33	7.7 (1/13)

Gastroenterology 2013; 144: 333-340

Transmural Fully-Covered Metal Stents for Walled-Off Necrosis

Direct Endoscopic Necrosectomy through Lumen-Apposing Stent for Walled-Off Necrosis

Endoscopic Morcellator Device

Endoscopy and Minimally Invasive Surgery have Similar Outcomes for WON Drainage but Complications Including Pancreatic Fistula more Common in Surgery

	PENGUIN trial ⁷⁷		TENSION trial ⁹⁶		MISER trial ⁷⁸	
	Group 1	Group 2	Group 1	Group 2	Group 1	Group 2
Modality	Endoscopic	Surgical	Endoscopic	Surgical	Endoscopic	Surgical
No. of patients	10	10	51	47	34	32
Infected necrosis, n (%)	10 (100)	9 (90)	23 (45)	27 (57)	31 (91)	30 (94)
New-onset organ failure, n (%)						
Single	NR	NR	7 (14)	13 (28)	NR	NR
Multiple	0 (0)	5 (50)	2 (4)	6 (13)	2 (6)	3 (9)
Death, n (%)	1 (10)	4 (40)	9 (18)	6 (13)	3 (9)	2 (6)
Composite endpoint, n (%)	2 (20)	8 (80)	22 (43)	21 (45)	4 (12)	13 (41)
Complications, n (%)						
Bleeding	0 (0)	0 (0)	11 (22)	10 (21)	0	3 (9)
Perforation	0 (0)	2 (20)	4 (8)	8 (17)	0	0
Fistula (pancreatic)	1 (10)	7 (70)	2/42 (5)	13/41 (32)	0	9 (28)

Trikudanathan G et al. Gastroenterology 2019; 156: 1994-2007, Bakker OJ et al. JAMA 2012; 307: 1053-1061, van Brunschot S et al. Lancet 2018; 391: 51-58, Bang JY et al. Gastroenterology 2019; 156: 1027-1040

Key Points

- Abdominal pain and pancreatic enzyme elevation are not specific for acute pancreatitis as there are many other disease that present this way, only use lipase for diagnosing acute pancreatitis
- Avoid early and excessive cross-sectional imaging in acute pancreatitis
- Persistent /multisystem OF are the primary determinant of mortality in NP and therefore define severe AP
- IPN alone in the absence of OF is associated with no to low mortality
- Predicted severe AP infrequently 'predicts' the development of actual severe AP
- Use lactated Ringer's, more aggressive volume appears to reduce inflammation/length of stay in mild AP but no biomarker predicts who needs more fluid in severe AP
- Try oral route if possible with low fat/low residue diet, if this is not tolerated NG or NJ. Start within the first few days of hospitalization
- No role for prophylactic antibiotics but antibiotics are often given for SIRS and extrapancreatic infections
- Early open surgical or endoscopic necrosectomy is associated with increased mortality so try to delay to enable development of walled off necrosis when endoscopy or minimally invasive surgical techniques can be successfully employed for treatment. Only percutaneous drain should be used early if required with "step-up" as needed.

Thank You vsingh1@jhmi.edu

