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BACKGROUND
Hospitalized adults whose condition deteriorates while they are in wards (outside 
the intensive care unit [ICU]) have considerable morbidity and mortality. Early 
identification of patients at risk for clinical deterioration has relied on manually 
calculated scores. Outcomes after an automated detection of impending clinical 
deterioration have not been widely reported.

METHODS
On the basis of a validated model that uses information from electronic medical 
records to identify hospitalized patients at high risk for clinical deterioration 
(which permits automated, real-time risk-score calculation), we developed an in-
tervention program involving remote monitoring by nurses who reviewed records 
of patients who had been identified as being at high risk; results of this monitor-
ing were then communicated to rapid-response teams at hospitals. We compared 
outcomes (including the primary outcome, mortality within 30 days after an alert) 
among hospitalized patients (excluding those in the ICU) whose condition reached 
the alert threshold at hospitals where the system was operational (intervention 
sites, where alerts led to a clinical response) with outcomes among patients at 
hospitals where the system had not yet been deployed (comparison sites, where a 
patient’s condition would have triggered a clinical response after an alert had the 
system been operational). Multivariate analyses adjusted for demographic charac-
teristics, severity of illness, and burden of coexisting conditions.

RESULTS
The program was deployed in a staggered fashion at 19 hospitals between August 
1, 2016, and February 28, 2019. We identified 548,838 non-ICU hospitalizations 
involving 326,816 patients. A total of 43,949 hospitalizations (involving 35,669 
patients) involved a patient whose condition reached the alert threshold; 15,487 
hospitalizations were included in the intervention cohort, and 28,462 hospitaliza-
tions in the comparison cohort. Mortality within 30 days after an alert was lower 
in the intervention cohort than in the comparison cohort (adjusted relative risk, 
0.84, 95% confidence interval, 0.78 to 0.90; P<0.001).

CONCLUSIONS
The use of an automated predictive model to identify high-risk patients for whom 
interventions by rapid-response teams could be implemented was associated with 
decreased mortality. (Funded by the Gordon and Betty Moore Foundation and others.)
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Adults whose condition deterio-
rates in general medical–surgical wards 
have considerable morbidity and mortal-

ity.1-5 Efforts at early detection of clinical deterio-
ration in inpatients who are outside the intensive 
care unit (ICU) have used manually calculated 
scores (e.g., the National Early Warning Score6) 
in which chart abstraction of vital signs and point 
assignment that is based on these values are 
performed manually; if a patient’s score exceeds 
a threshold, a rapid-response team is called. Some 
studies have described automated vital-signs 
triggers7 and automated versions of the National 
Early Warning Score8 or similar9 scores. Several 
investigators have developed complex predictive 
models, suitable for real-time use with elec-
tronic health records (EHRs), for early detection 
of deterioration in a patient’s condition,10-12 in-
cluding one model that was tested in a random-
ized trial.13 These EHR-based models include labo-
ratory tests and information about coexisting 
conditions; they can involve complex calculations.

We previously described an automated early 
warning system that identifies patients at high 
risk for clinical deterioration. Detection is 
achieved with the use of a predictive model (the 
Advance Alert Monitor [AAM] program)14 that 
identifies such patients. Beginning in November 
2013, we conducted a pilot test of this program 
in 2 hospitals in Kaiser Permanente Northern 
California (KPNC), an integrated health care 
delivery system that owns 21 hospitals.15-18 The 
system generates AAM scores that predict the 
risk of unplanned transfer to the ICU or death in 
a hospital ward among patients who have “full 
code” orders (i.e., patients who wish to have 
cardiopulmonary resuscitation performed in 
the event that they have a cardiac arrest). The 
alerts provide 12-hour warnings14 and do not 
require an immediate response from clinicians. 
Given encouraging results from this program,18,19 
the KPNC leadership deployed the AAM pro-
gram in its 19 remaining hospitals on a stag-
gered schedule.

In this article, we describe the effect of the 
program deployment in these 19 hospitals over 
a 3.5-year period. We compared outcomes at 
sites where the program was operational (inter-
vention population) with outcomes at sites where 
it had not yet been deployed (comparison popu-
lation, which involved patients whose conditions 
would have triggered alerts had the system been 
operational).

Me thods

Predictive Model to Identify Patients at High 
Risk for Clinical Deterioration

Our study included all 21 hospitals (including 
the 2 pilot sites) in the KPNC system2,4,20-23 that 
had been using the Epic EHR system (www . epic 
. com) since mid-2010. We used a discrete-time, 
logistic-regression model to generate hourly AAM 
scores.14 The model was based on 649,418 hospi-
talizations (including 19,153 hospitalizations in 
which the patients’ condition deteriorated) in-
volving 374,838 patients 18 years of age or older 
who had been admitted to KPNC hospitals be-
tween January 1, 2010, and December 31, 2013. 
Predictors included laboratory tests, individual 
vital signs, neurologic status, severity of illness 
and longitudinal indexes of coexisting condi-
tions, care directives, and health services indica-
tors (e.g., length of stay). As instantiated in the 
Epic EHR system, an AAM score of 5 (alert 
threshold) indicates a 12-hour risk of clinical 
deterioration of 8% or more. At this threshold, 
the model generates one new alert per day per 
35 patients, with a C statistic of 0.82 and 49% 
sensitivity.

Study Population and Intervention

The eligible population consisted of adults 18 years 
of age or older who had initially been admitted 
to a general medical–surgical ward or step-down 
unit, including patients who had initially been 
admitted to a surgical area and who were then 
subsequently admitted to one of these units. The 
target population included eligible patients whose 
condition reached the alert threshold at sites 
where the program was operational (intervention 
cohort; alerts led to a clinical response) or not 
(comparison cohort; usual care, with no alerts). 
The comparison cohort also included all the 
patients who had been admitted to any of the 
study hospitals in the 1 year before the introduc-
tion of the intervention in the first hospital 
(historical controls). The nontarget population 
included all the patients whose condition did not 
reach the alert threshold.

The automated system scanned a patient’s 
data and assigned separate scores for the follow-
ing three variables: vital signs and laboratory 
test results (assessed at admission and hourly 
with the Laboratory-based Acute Physiology Score, 
version 2 [LAPS2], on a scale from 0 to 414, with 
higher scores indicating greater physiologic in-
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stability), chronic coexisting conditions at admis-
sion (Comorbidity Point Score, version 2 [COPS2], 
on which 12-month scores range from 0 to 1014, 
with higher scores indicating a worse burden of 
coexisting conditions), and deterioration risk 
(according to the AAM, with risk scores ranging 
from 0 to 100%, and higher scores indicating a 
greater risk of clinical deterioration).14,21 The 
LAPS2 and COPS2 scores, which are assigned to 
all hospitalized adults, are scalar values that fa-
cilitate the characterization and description of 
patients’ vital signs plus laboratory test results 
and their coexisting conditions separately. Pa-
tients with the care directives “full code,” “par-
tial code” (i.e., patients allow some, but not all, 
resuscitation procedures), and “do not resusci-
tate” are assigned AAM scores; AAM scores are 
not assigned to patients in the ICU or to patients 
who have a care directive of “comfort care only,” 
who were excluded from our main analyses.

In order to minimize alert fatigue, automated-
system results were not shown directly to hospi-
tal staff. Specially trained registered nurses 
monitored alerts remotely. If the AAM score 
reached the threshold, the nurses working re-
motely performed an initial chart review and 
contacted the rapid-response nurse on the ward 
or step-down unit, who then initiated a struc-
tured assessment and contacted the patient’s 
physician. The physician then could initiate a 
clinical rescue protocol (which could include 
proactive transfer to the ICU), an urgent pallia-
tive care consultation, or both. Subsequently, the 
nurses working remotely monitored patients’ 
status, ensuring adherence to the performance 
standards of the AAM program.24 At active sites, 
registered nurses on the rapid-response team 
were staffed 24 hours a day, 7 days a week, and 
did not have regular patient assignments. Imple-
mentation teams ensured that the clinical staff 
at the study sites received training on all the 
components of the program (Section S1 in the 
Supplementary Appendix, available with the full 
text of this article at NEJM.org).15-18,24 This study 
was approved by the KPNC Institutional Review 
Board for the Protection of Human Subjects.

Staggered Deployment

After implementing the program at 2 hospitals 
(pilot sites), we ranked the remaining 19 hospi-
tals according to expected numbers of outcomes. 
The health system leadership agreed that the 
3 hospitals with the highest expected numbers 

would go first, using a random sequence. The 
staggered deployment sequence for the 16 other 
hospitals was based on operational and geo-
graphic criteria, which were dictated by the 
limited availability of the implementation teams. 
All 21 hospitals ultimately adopted the program.

Analytic Strategy

We estimated that the study would have power 
to detect a decrease in 90-day mortality attrib-
uted to the program, assuming that two or three 
hospitals (excluding the two pilot sites) would 
adopt the program on the same date every 
2 months. We calculated the study power to 
detect 90-day mortality that was 10% and 20% 
lower in the target population at the intervention 
sites than in the population at the comparison 
sites. Assuming the deployment of a new pair or 
triad of hospitals every 2 months, we estimated 
that the study would have more than 80% power 
to detect an effect size of more than 20% with 
a 10-month follow-up. Subsequently, because of 
internal requests to evaluate the program as soon 
as possible, we elected to use a 30-day time frame 
for outcomes.

The study period (August 1, 2015, to February 
28, 2019) included the year before the intervention 
was deployed (August 1, 2015, to July 31, 2016). 
The principal independent variable was the sta-
tus of the AAM program (operational or not) at 
a hospital. The unit of analysis was a patient’s 
hospitalization, which in some cases involved 
linking multiple hospital stays within KPNC, in 
which interhospital transport is common.21,23

Outcomes

The principal dependent variable was mortality 
within 30 days after an AAM alert. We also ana-
lyzed the following secondary outcomes: ICU 
admission; length of stay in the hospital; 30-day 
mortality after admission; and favorable status 
at 30 days (defined as the patient being alive, not 
in the hospital, and not having been rehospital-
ized), which was analyzed post hoc.

Attention that was given to patients whose 
condition triggered an alert could harm other 
patients.25 Given resource limitations, our ability 
to quantify unintended harm was limited to 
analyzing mortality and length of stay in the 
hospital among patients in a ward or step-down 
unit whose condition did not trigger an alert 
(eligible, nontarget population) and among pa-
tients who had initially been admitted to the 
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ICU. For these analyses involving patients with-
out alerts, we used the time of hospital admis-
sion as the starting point (T0).

Data Collection

We captured data regarding the demographic 
characteristics of the patients (including Kaiser 
Foundation Health Plan [KFHP] coverage), se-
quence of hospital units (ward, ICU, etc.) where 
the patients stayed, length of stay in the hospi-
tal, mortality, and rehospitalization.2,4,20-23 We 
grouped patients’ diagnoses into 30 primary 
conditions according to the International Classifi-
cation of Diseases, 9th and 10th Revisions,21,22 using 
classification software from the Healthcare Cost 
and Utilization Project (www . ahrq . gov/  data/  hcup). 
We classified patients’ care directives as “full 
code” or “not full code” (which included the 
directives “partial code,” “do not resuscitate,” 
and “comfort care only”)21 and assigned Charl-
son comorbidity index scores to patients.26 We 
excluded hospital records that did not include 
data on stays in a ward or step-down unit; miss-
ing or clearly erroneous data for the AAM score, 
LAPS2, and COPS2 were imputed or truncated 
(Section S5).14,21

At the pilot sites, scores that were calculated 
on an external server were displayed every 6 hours 
on EHR dashboards that were visible to clini-
cians.16 After the decision was made to use hourly 
remote monitoring that would not be displayed to 
hospital clinicians, score calculation was moved 
to different servers and then to the predictive 
modeling module of the Epic EHR system. This 
meant that, although the predicted risk was the 
same, the apparent threshold that was used by 
the nurses working remotely changed. Moreover, 
before the activation of the AAM program at the 
first hospital, AAM scores were not available, 
nor were they available at any site before the 
activation of the program. To ensure uniform 
measurement in the periods before and after 
deployment of the program, we based analyses 
on retrospective data from the Epic Clarity data 
warehouse, not on scores assigned by the system. 
We assigned all the patients at all the sites retro-
spective LAPS2, COPS2, and AAM scores on ad-
mission, every hour, any time a hospital unit 
change occurred, and (for patients at active sites) 
any time an alert was issued. For our principal 
analyses, T0 was the time of the first retrospec-
tive or actual alert for a patient during a hospi-
talization. For outcomes among patients in the 

nontarget population and among those admitted 
directly to the ICU, T0 was the time of hospital 
admission.

Statistical Analysis

Our primary analysis assessed the effect of the 
intervention in the target cohort (with regard to 
ICU admission, mortality, length of stay, and 
favorable status after discharge). Using the same 
approach, we also evaluated the intervention ef-
fect in the nontarget population and the ICU co-
hort to assess for possible harm. Hospitalizations 
were assigned to intervention or comparison 
status according to their first alert date (for hos-
pitalizations in the target cohort) or admission 
date (for those in the nontarget population and 
the ICU cohort).

We used generalized linear models to esti-
mate the intervention effect with a fixed esti-
mate for the intervention and fixed hospital ef-
fects, controlling for secular trends27 and patient 
covariates for the target, nontarget, and ICU 
cohorts separately. We modeled secular time 
trends as restricted cubic spline functions with 
five knots placed at equally spaced percentiles of 
time and a truncated-power-function basis.28-30

All the models were adjusted for age, sex, 
season (whether admission occurred in Decem-
ber through March), KFHP coverage, care direc-
tive (at the time of first alert for the target co-
hort and on admission for the eligible and entire 
hospitalized cohorts), COPS2, LAPS2 at admis-
sion, and diagnosis. The target-population mod-
els also include the first alert value and elapsed 
hours from admission to the first alert.

We modeled binary outcomes (mortality, ICU 
admission, and favorable status within 30 days) 
using a Poisson distribution with a log link to 
estimate the adjusted relative risk of the interven-
tion episodes, as compared with the no-inter-
vention episodes.31 Missing or censored values 
were set to the favorable event for binary out-
comes. We used a competing-risk Cox propor-
tional-hazards model to assess the effect of the 
intervention on the length of stay in the hospital 
(time to hospital discharge), with death as a com-
peting risk.32,33 In this model, the hazard rate 
ratio refers to the intervention instantaneous rate 
of discharge from the hospital divided by the 
instantaneous rate of discharge from the hospi-
tal in the comparison group. Thus, a rate ratio 
of more than 1 indicates that the intervention 
shortened the time to discharge. Cox proportional-
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hazards models were used in a post hoc analysis 
of the effect of the intervention on mortality 
over the course of the entire study period.34-37 We 
assessed the proportional-hazards assumption 
by testing whether the Schoenfeld residuals were 
associated with time.38

We applied these models to 1000 bootstrap 
samples that were generated in two stages. First, 
we obtained a random sample of ni patients 
(where ni is the number of unique patients in 
hospital i) with replacement within each hospi-
tal; we then retained all hospitalizations for 
selected patients who had multiple hospitaliza-
tions.39 We constructed 95% confidence intervals 
by taking the 2.5th and 97.5th percentiles as the 
lower and upper boundaries. We did not adjust 
the confidence intervals for multiple compari-
sons, and we report a two-sided P value only for 
the primary outcome.

Since the intervention protocols differed from 
the protocol that was used in the 2 pilot-site 
hospitals, we elected to conduct our analyses 
using only the other 19 hospitals. As a sensitiv-
ity analysis, we replicated our analyses using 
data from all 21 hospitals starting in November 
2012, which was 1 year before the program be-
gan at the first pilot site.

The analyses were conducted with the use of 
R software, version 3.5.2, and SAS software, ver-
sion 9.4 (SAS Institute). Quantification of the 
process measures is described in Section S6.

R esult s

Study Population

We identified 633,430 hospitalizations during the 
study period. After excluding 17,042 hospitaliza-
tions for which the hospital location could not 
be determined and 769 hospitalizations for ob-
stetric reasons, 615,619 hospitalizations (548,838 
in the eligible population and 66,781 in the ICU 
cohort) involving 354,489 patients were included 
in the analysis (Fig. 1). Events for which a pa-
tient’s condition triggered an alert at a hospital 
different from the one at which the patient had 
been admitted were rare (<1%).

Unadjusted Analyses

Table 1 shows the eligible population, divided 
into the target and nontarget populations, with 
the intervention and comparison cohorts in the 
target population (Section S3). Patients who 
reached the alert threshold were sicker than pa-

tients in the ward or step-down unit who did not 
reach the alert threshold. Table 1 also shows the 
unadjusted comparisons between 15,487 hospi-
talizations (involving 13,274 patients) in the in-
tervention cohort and 28,462 hospitalizations 
(involving 23,797 patients) in the comparison 
cohort. Patients in the intervention cohort, as 
compared with those in the comparison cohort, 
had a lower unadjusted incidence of ICU admis-

Figure 1. Study Cohorts.

Eligible patients were those whose initial hospital unit after admission was 
the ward or step-down unit and those who had initially been admitted to a 
surgical area and whose first postsurgical unit was the ward or step-down 
unit. Patients with direct admission to the intensive care unit (ICU) were 
not eligible. (Information about patients who had been admitted to the ICU 
is provided in Section S3.) Eligible hospitalizations were assigned to the 
target or nontarget population on the basis of the study definitions. The 
target population consisted of patients who had a hospitalization in which 
the patient’s condition reached the alert threshold of the Advance Alert 
Monitor program. If the alert occurred at a hospital where the program was  
active, the hospitalization was included in the intervention cohort; if the pro-
gram was not active at the hospital, the hospitalization was included in the 
comparison cohort.

548,838 (89.2%) Involved admission
to a ward or step-down unit and were

included in the eligible population

615,619 Hospitalizations involving adults
between Aug. 1, 2015, and Feb. 28, 2019,

were assessed

66,781 (10.8%) Were ineligible
for inclusion in the study

because the initial admission
unit was the ICU

Alert threshold reached?

Advance Alert Monitor
program active at hospital?

28,462 Were included in the
comparison cohort

15,487 Were included in the
intervention cohort

43,949 (7.1%) Were
included in the target

population

504,889 (82.0%) Were
included in the nontarget

population

NoYes

NoYes
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sion (17.7% vs. 20.9%), a shorter length of stay 
among survivors (6.5 days vs. 7.2 days), and 
lower mortality within 30 days after an event 
reaching the alert threshold (15.8% vs. 20.4%).

Adjusted Analyses

Figure 2 shows the staggered deployment se-
quence of the hospitals, the numbers of patients 
in the target population, and unadjusted mortal-
ity within 30 days after an event reaching the 
alert threshold. Table 2 shows adjusted results 
for the target population and the nontarget 
population. The intervention condition (alerts 
led to a clinical response) was associated with 
lower mortality within 30 days after an event 
reaching the alert threshold than the compari-
son condition (usual care, with no alerts) (ad-
justed relative risk, 0.84; 95% confidence inter-
val [CI], 0.78 to 0.90; P<0.001), without worse 
outcomes in the nontarget population. We esti-
mated an absolute difference of 3.8 percentage 
points in mortality within 30 days after an event 
reaching the alert threshold between the inter-
vention cohort and the comparison cohort. This 
difference translated into 3.0 deaths (95% CI, 
1.2 to 4.8) avoided per 1000 eligible patients or 
to 520 deaths (95% CI, 209 to 831) per year over 
the 3.5-year study period among approximately 
153,000 annual hospitalizations. The intervention 
was also associated with a lower incidence of 
ICU admission, a higher percentage of patients 
with a favorable status 30 days after the alert, a 
shorter length of stay, and longer survival.

Examination of individual hospital coefficients 
showed limited variation in mortality outcomes 
across the study hospitals (Table S8). The indi-
vidual hospital risk ratios for mortality within 
30 days after an alert relative to the first hospital 
at which the AAM program became active varied 
between 0.9 and 1.5.

Sensitivity Analyses and Process Measures

Results from our sensitivity analyses were simi-
lar to those of the primary analyses and were 
also favorable in the intervention cohort. Patients 
in the intervention cohort were less likely than 
those in the comparison cohort to die without a 
referral for palliative care. We did not observe 
clinically significant differences in vital-sign 
measurements, therapies, and changes in care 
directives between the intervention cohort and 
the comparison cohort (Tables S11 through S15). 
This result indicates that we were not able to 

identify changes in process measures that may 
have led to the observed improvements in out-
comes associated with the intervention.

Discussion

In this study, we quantified beneficial hospital 
outcomes — lower mortality, a lower incidence 
of ICU admission, and a shorter length of hospi-
tal stay — that were associated with staggered 
deployment of an automated predictive model 
that identifies patients at high risk for clinical 
deterioration. Unlike many scores currently in 
use, AAM is fully automated, takes advantage of 
detailed EHR data, and does not require an im-
mediate response by hospital staff. These factors 
facilitated its incorporation into a rapid-response 
system that uses remote monitoring, thus shield-
ing providers from alert fatigue. The AAM pro-
gram is based on standardized workflows for all 
aspects of care of patients whose condition is 
deteriorating in wards, including aspects of care 
involving clinical rescue, palliative care, provider 
education, and system administration.24

The magnitude of the effects we found are con-
sistent with other studies of rapid-response sys-
tems. With respect to complex automated scores, 
it is important to consider the rigorously executed 
randomized trial conducted by Kollef et al.13 
Those authors found a shorter length of stay in 
the hospital among patients who had an early-
warning-system alert displayed to clinicians than 
among patients for whom alerts were not dis-
played, but they also found no change in the 
incidence of ICU admission or in in-hospital mor-
tality. In a very large study of a rapid-response 
system that used manual scores, Chen et al.40 
found that preexisting favorable trends in mor-
tality in 292 Australian hospitals continued, with 
additional improvement among low-risk patients. 
Priestley et al.41 compared outcomes in a single 
hospital before and after the implementation of a 
rapid-response system that used manual scoring. 
They found lower inpatient mortality than we 
did but did not report 30-day mortality and had 
equivocal findings regarding the length of stay 
in the hospital. Bedoya et al.8 used an automated 
version of the National Early Warning Score and 
found no change in the incidence of ICU admis-
sion or in in-hospital mortality. Bedoya et al. 
also found that there was clinician frustration 
with excessive alerts and noted that the score 
was largely ignored by frontline nursing staff.
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Our study has various strengths. It was based on 
a large, multicenter cohort and included multiple 
outcomes. We adjusted the analyses for severity of 
illness, which is assessed hourly with the LAPS2 

in KPNC. Our results are statistically robust, with all 
the sensitivity analyses trending in the same direc-
tion. Furthermore, KPNC has made a major effort to 
ensure consistent implementation of the program.24

Table 1. Characteristics of the Study Population.*

Characteristic Eligible Population Nontarget Population Target Population

Intervention Cohort Comparison Cohort

No. of hospitalizations 548,838 504,889 15,487 28,462

No. of patients 326,816 313,115 13,274 23,797

Inpatient admission (%) 75.6 74.4 88.7 90.4

Admission for observation (%) 24.4 25.6 11.3  9.6

Age (yr) 66.1±17.5 66.0±17.6 68.4±15.6 67.2±16.2

Male sex (%) 48.0 47.4 55.1 54.3

Admission from emergency department (%) 75.9 74.3 94.3 93.5

Charlson comorbidity index†

Median score (IQR) 3.0 (1.0–5.0) 2.0 (1.0–5.0) 4.0 (2.0–7.0) 4.0 (2.0–7.0)

Score ≥4 (%) 40.9 39.5 57.9 56.3

COPS2‡

Mean score 50.6±49.8 48.6±48.5 74.7±60.1 71.9±58.2

Score ≥65 (%) 30.9 29.3 49.6 48.4

Admission LAPS2§

Mean score 58.7±37.9 55.3±35.9 97.8±36.7 98.3±38.1

Score ≥110 (%) 10.7  8.3 37.0 38.5

Full code on admission (%)¶ 94.0 94.0 93.2 95.4

Patients with any admission to the ICU during 
 current hospitalization (%)

 4.5  3.2 17.7 20.9

Patients who died in the hospital (%)  2.1  1.1  9.8 14.4

Length of stay in the hospital (days)

Among patients who survived 3.5±4.5 3.2±3.7 6.5±8.0 7.2±10.1

Among patients who died 7.5±10.7 6.0±7.5 9.1±12.0 9.0±13.3

Outcome within 30 days after admission (%)

Death  5.4  4.2 15.5 19.9

Favorable outcome‖ 83.2 84.9 66.3 62.5

Outcome within 30 days after first alert (%)

Death — — 15.8 20.4

Favorable outcome‖ — — 66.3 62.5

*  Plus–minus values are means ±SD. The unit of analysis is a patient’s hospitalization, which could include multiple linked hospital stays for patients 
who were transported between hospitals. Since patients could have multiple hospitalizations, the values for patients’ characteristics are those at 
the time of a given hospitalization. Additional details are provided in Section S3. ICU denotes intensive care unit, and IQR interquartile range.

†  Scores on the Charlson comorbidity index range from 0 to 40, with higher scores indicating a greater burden of coexisting conditions. 
Scores were calculated using the methods of Deyo et al.26

‡  The scale for the Comorbidity Point Score, version 2 (COPS2), ranges from 0 to 1014, with higher scores indicating an increasing burden of 
coexisting conditions. The score is assigned on the basis of all the diagnoses received by a patient in the 12 months before the index hospi-
talization. The univariate relationship of COPS2 to 30-day mortality is as follows: a score of 0 to 39 is associated with 1.7% mortality;  
a score of 40 to 64 with 5.2%; and a score of 65 or higher with 9.0%. Details are provided by Escobar et al.21

§  Scores on the Laboratory-based Acute Physiology Score, version 2 (LAPS2), range from 0 to 414, with higher scores indicating increasing 
physiologic abnormalities. The score is assigned on the basis of a patient’s worst vital signs, results on pulse oximetry, neurologic status, 
and 16 laboratory test results obtained in the preceding 24 hours (hourly and discharge LAPS2) or 72 hours (admission LAPS2). The uni-
variate relationship of an admission LAPS2 to 30-day mortality is as follows: a score of 0 to 59 is associated with 1.0% mortality; a score of 
60 to 109 with 5.0%; and a score of 110 or higher with 13.7%. Details are provided by Escobar et al.21

¶  Care directives were classified as “full code” or “not full code” (which included the care directives “partial code,” “do not resuscitate,” and 
“comfort care only”).

‖  Favorable status at 30 days indicates that, at 30 days after an alert (target population) or at 30 days after admission (remaining eligible hos-
pitalizations; nontarget population) the patient was alive, was not in the hospital, and had not been readmitted at any time.
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Our study also has important limitations. It 
does not have the methodologic rigor of the 
randomized, controlled trial conducted by Kollef 
et al.; that trial had a much smaller sample size, 
however.13 It is not possible for us to identify the 
exact timing and nature of the clinicians’ actions 
that occurred after an alert.24 Although it has 
recently become feasible,42 we did not have the 
technical capability or organizational approval 
for patient-level randomization. Moreover, given 
data limitations, technical obstacles, and a com-
plex intervention with multiple components, we 
cannot determine the exact causes of the ob-
served associations. This limitation is also a re-
sult of the fact that iterative improvements in 
computing infrastructure, documentation prac-
tices, and workflows were needed to ensure sus-
tainable rollout. Furthermore, process-measure 
analyses did not show consistent significant as-
sociations with the intervention. Thus, we cannot 
rule out the possibility that improved outcomes 
were the result of broad institutional cultural 
change rather than the intervention per se.

Another limitation to generalizability is the 
study cohort, which consisted of a population of 
insured patients who were cared for in a highly 
integrated system in which baseline hospitaliza-
tion rates were decreasing.23 Given an increasing 
threshold for admission, our population of pa-
tients may differ from those in other hospital 
cohorts.

Reflection on our findings suggests future 
directions for research. One direction is to quan-
tify the relative contributions of the predictive 
model and the clinical rescue and palliative care 
processes. Automated scores have statistical per-
formance that is superior to scores such as the 
National Early Warning Score,43 but it is unclear 
whether scores that use newer approaches (e.g., 
so-called bespoke models44) will necessarily 
result in better outcomes. This is because, as 
Bedoya et al.8 point out, clinicians might not use 
the predictions. A second area relates to how 
notifications are handled. Although the use of 
remote monitoring in KPNC appears to have 
been successful, it is not the only way in which 

Figure 2. Staggered Deployment of the Advance Alert Monitor Program.

The left column shows the deployment sequence number of each hospital. The next columns show the numbers of 
hospitalizations in which the patient reached the alert threshold (target hospitalizations) before and after the activa-
tion of the program; the numbers in parentheses show mortality within 30 days after an alert that occurred in a given 
hospitalization. The bar graph shows the dates on which the program became active at each hospital. The study 
 period began on August, 1, 2015, which was 1 year before the deployment of the program at the first hospital.

Before activation After activation

Date on Which the Program Became Active

Aug. 1, 2015, to Feb. 28, 2019

Deployment
Sequence

No.

no. of target hospitalizations
(% mortality 30 days after alert)

Before
Program

Activation

1056 (20) 3632 (15)

1251 (24) 2191 (19)

1516 (21) 1679 (17)

2081 (24) 1806 (17)

1950 (18) 1137 (14)

2034 (21) 1357 (15)

953 (22) 608 (20)

1268 (19) 533 (14)

574 (25) 195 (24)

1552 (19) 455 (11)

2062 (20) 513 (13)

455 (13) 109 (6)  

1307 (26) 209 (22)

3021 (20) 385 (13)

1564 (15)  191 (6)  

1707 (21) 215 (13)

1223 (23) 109 (9)  

1089 (22) 92 (11)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 1799 (18) 71 (13)

After
Program

Activation

Aug. 1, 2016

Jan. 18, 2017

May 31, 2017

Sept. 27, 2017

Dec. 11, 2017

Dec. 14, 2017

Dec. 14, 2017

March 26, 2018

June 12, 2018

June 13, 2018

July 11, 2018

Sept. 13, 2018

Sept. 28, 2018

Nov. 13, 2018

Nov. 13, 2018

Nov. 15, 2018

Nov. 26, 2018

Nov. 27, 2018

Jan. 14, 2019
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one might ensure compliance without alert fa-
tigue. The program is amortized across 21 hos-
pitals, which permits economies of scale, such 
as the use of nurses working remotely who at-
tempt to mitigate alert fatigue as well as monitor 
compliance with clinical rescue and palliative care 
workflows. This approach may not be feasible 
for many hospitals.

In this study, we found that in conjunction 
with careful implementation, the use of auto-
mated predictive models was associated with 
lower hospital mortality, a lower incidence of 
ICU admission, and a shorter length of stay in 
the hospital.
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Table 2. Adjusted Outcomes in the Eligible Population, with Comparison between the Intervention Cohort  
and Comparison Cohort.*

Variable
Study 

Population
Adjusted Relative Risk or 

Hazard Rate Ratio (95% CI)

Target population

No. of hospitalizations  43,949

No. of patients  35,669

ICU admission within 30 days after alert 0.91 (0.84–0.98)

Death within 30 days after alert 0.84 (0.78–0.90)

Favorable status at 30 days after alert† 1.04 (1.02–1.06)

Hospital discharge, as assessed by proportional-hazards analysis 1.07 (1.03–1.11)

Survival, as assessed by proportional-hazards analysis 0.83 (0.78–0.89)

Nontarget population

No. of hospitalizations 504,889

No. of patients 313,115

ICU admission within 30 days after admission 0.94 (0.89–0.99)

Death within 30 days after admission 0.97 (0.93–1.02)

Favorable status 30 days after admission† 1.00 (0.99–1.00)

Hospital discharge, as assessed by proportional-hazards analysis 0.98 (0.97–0.99)

Survival, as assessed by proportional-hazards analysis 0.99 (0.96–1.03)

*  The analysis included 548,838 hospitalizations and 326,816 patients (a patient could be included in both the target and 
nontarget populations, so the numbers of patients do not sum to 326,816). For the first three analyses (ICU admis-
sion, mortality, and favorable status within 30 days after an alert), the adjusted relative risk is for whether the patient 
was in the intervention condition (alerts led to a clinical response), as compared with patients in the comparison condition 
(usual care, with no alerts). For the nontarget population, the analytic approach was the same as for the target population, 
except that the cohorts involved patients on the ward whose condition did not trigger an alert; since there was no alert, we 
used 30-day mortality. We used Cox proportional-hazard models to assess the effects of the intervention on the hospital 
length of stay, with censoring of a patient’s data at the time of death, and long-term survival (median follow-up in the target 
population, 0.8 years [IQR, 0.1 to 1.8]; median follow-up in the nontarget population, 1.4 years [IQR, 0.5 to 2.4]; maximum 
follow-up in both populations, 3.6 years). For the hospital length of stay, the hazard rate ratio refers to the instantaneous rate 
of discharge from the hospital divided by the instantaneous rate of discharge from the hospital in the comparison group; a 
rate ratio greater than 1 indicates that the intervention shortened the time to discharge. The hazard rate ratio corresponding 
to long-term survival refers to the long-term mortality in the intervention group as compared with the comparison group; a 
ratio lower than 1 indicates lower mortality in the intervention group. Additional details are provided by Harrell,34 Basu et al.,35 
Hosmer and Lemeshow,36 and Mihaylova et al.37 Confidence intervals (CIs) were calculated with the use of bootstrapping to 
control for within-facility and within-patient correlations; see Goldstein et al.39

†  Favorable status at 30 days indicates that, at 30 days after an alert (in the target population) or at 30 days after admission 
(in the nontarget population) the patient was alive, was not in the hospital, and had not been readmitted at any time.
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