
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 377;8  nejm.org  August 24, 2017 745

The authors’ full names, academic de‑
grees, and affiliations are listed in the 
Appendix. Address reprint requests to 
Dr. Bress at the University of Utah School 
of Medicine, 295 Chipeta Way, Salt Lake 
City, UT 84108, or at adam​.bress@​hsc​ 
.utah​.edu.

*	A complete list of the investigators in 
the Systolic Blood Pressure Intervention 
Trial (SPRINT) Research Group is pro‑
vided in the Supplementary Appendix, 
available at NEJM.org.

Drs. Weintraub and Moran, and Drs. Bress 
and Bellows, contributed equally to this 
article.

N Engl J Med 2017;377:745-55.
DOI: 10.1056/NEJMsa1616035
Copyright © 2017 Massachusetts Medical Society.

BACKGROUND
In the Systolic Blood Pressure Intervention Trial (SPRINT), adults at high risk for 
cardiovascular disease who received intensive systolic blood-pressure control (target, 
<120 mm Hg) had significantly lower rates of death and cardiovascular disease 
events than did those who received standard control (target, <140 mm Hg). On the 
basis of these data, we wanted to determine the lifetime health benefits and health 
care costs associated with intensive control versus standard control.

METHODS
We used a microsimulation model to apply SPRINT treatment effects and health 
care costs from national sources to a hypothetical cohort of SPRINT-eligible 
adults. The model projected lifetime costs of treatment and monitoring in patients 
with hypertension, cardiovascular disease events and subsequent treatment costs, 
treatment-related risks of serious adverse events and subsequent costs, and quality-
adjusted life-years (QALYs) for intensive control versus standard control of systolic 
blood pressure.

RESULTS
We determined that the mean number of QALYs would be 0.27 higher among 
patients who received intensive control than among those who received standard 
control and would cost approximately $47,000 more per QALY gained if there were 
a reduction in adherence and treatment effects after 5 years; the cost would be 
approximately $28,000 more per QALY gained if the treatment effects persisted for 
the remaining lifetime of the patient. Most simulation results indicated that inten-
sive treatment would be cost-effective (51 to 79% below the willingness-to-pay 
threshold of $50,000 per QALY and 76 to 93% below the threshold of $100,000 per 
QALY), regardless of whether treatment effects were reduced after 5 years or per-
sisted for the remaining lifetime.

CONCLUSIONS
In this simulation study, intensive systolic blood-pressure control prevented car-
diovascular disease events and prolonged life and did so at levels below common 
willingness-to-pay thresholds per QALY, regardless of whether benefits were re-
duced after 5 years or persisted for the patient’s remaining lifetime. (Funded by the 
National Heart, Lung, and Blood Institute and others; SPRINT ClinicalTrials.gov 
number, NCT01206062.)
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The most effective blood-pressure 
goals for treatment with antihypertensive 
medications are uncertain. Treating hyper-

tension to standard systolic blood-pressure goals 
is cost-saving or cost-effective among patients at 
high risk for cardiovascular disease in the United 
States.1 However, until recently, evidence from 
randomized trials did not clearly support inten-
sive control of systolic blood pressure.2-4

The Systolic Blood Pressure Intervention Trial 
(SPRINT) showed significant reductions in the 
rates of death and cardiovascular disease events 
with intensive systolic blood-pressure control 
(intensive control; target, <120 mm Hg) versus 
standard control (target, <140 mm Hg) among 
adults at high risk for cardiovascular disease 
who had no history of diabetes, stroke, or heart 
failure.5,6 Intensive control may prevent cardio-
vascular disease events in high-risk patients and 
reduce health care costs, as compared with stan-
dard control, but these benefits must be weighed 
against the increased risk of serious adverse 
events and higher implementation costs (e.g., 
additional office visits, laboratory tests, and 
medications). The purpose of this SPRINT cost-
effectiveness study was to estimate lifetime 
health gains and averted health care costs with 
intensive control after considering increased treat-
ment costs and the risks of treatment-related 
serious adverse events.

Me thods

Microsimulation Model

We developed a microsimulation model to esti-
mate costs, clinical outcomes, and quality-adjusted 
life-years (QALYs) of systolic blood-pressure con-
trol in SPRINT-eligible adults (Fig. 1; and Figs. S1 
and S2 in the Supplementary Appendix, available 
with the full text of this article at NEJM.org). 
The model compared the lifetime incremental 
cost-effectiveness of intensive control with that 
of standard control with the use of 6-month 
cycles. We accounted for health gained and lost 
to society due to intensive control and for payers’ 
direct health care costs; patients’ indirect costs 
were not included.

We used SPRINT results to estimate the risk 
of death from all causes and from cardiovascular 
causes, cardiovascular disease events, and serious 
adverse events in 10,000 hypothetical patients 
who shared the same baseline characteristics, 

inclusion criteria, and number of intervention 
medications with SPRINT participants (Table 1, 
and Table S1 in the Supplementary Appendix).6 
Cardiovascular disease events included acute 
myocardial infarction, acute coronary syndrome 
not resulting in myocardial infarction, stroke, 
and heart failure. Serious adverse events of inter-
est were hypotension, syncope, bradycardia, elec-
trolyte abnormalities, and acute kidney injury.6

Probability of Clinical Events

For the first 5 years of the simulation, we as-
sumed that patients had adhered to medications 
as observed in SPRINT and were at risk for 
treatment-related serious adverse events, first fa-
tal or nonfatal cardiovascular disease events, and 
death from causes other than cardiovascular dis-
ease as reported for their assigned study groups. 
For survivors of incident cardiovascular disease 
events in the base case, we used risk equations 
of the American College of Cardiology and the 
American Heart Association (ACC–AHA) Pooled 
Cohorts7 to determine the risk of repeated car-
diovascular disease events. We varied these esti-
mates in scenario analyses. Other probabilities 
were derived from national sources and published 
literature (Table 1, and Table S1 in the Supple-
mentary Appendix).

During the initial 5-year period, our estimates 
of risks and benefits of intensive control versus 
standard control reflected the medication adher-
ence of the SPRINT participants. After the initial 
5-year period, we used four post-trial persistence-
of-treatment-effect scenarios to simulate the de-
gree to which the effects of intensive control 
would persist for patients’ remaining lifetimes. 
The four scenarios used different assumptions 
about the prevalence and duration of treatment 
adherence. In all four scenarios, we estimated 
the risks of a first cardiovascular disease event 
or serious adverse event in the subgroup of pa-
tients who were assumed to maintain treatment 
adherence similar to that of SPRINT participants 
on the basis of observed SPRINT estimates for 
their assigned study group. In this model, pa-
tients who did not adhere to their medication 
regimen reverted to their baseline, pretrial sys-
tolic blood pressure, and we used the Pooled 
Cohort risk equations to estimate the risk of a 
cardiovascular disease event on the basis of the 
systolic blood pressure and other characteristics.7 
In all the patients, we based the competing risk 
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of death from causes other than cardiovascular 
disease on the life tables of the Centers for Dis-
ease Control and Prevention.8

In the first scenario (base case), we simulated 
the possibility that medication adherence and 
therefore treatment effects would be gradually 
reduced after the first 5 years in the two study 
groups until 15 years after baseline, after which 
all the patients would no longer adhere to their 
assigned treatment (Tables S2 and S3 in the Sup-
plementary Appendix). The probability of treat-
ment adherence after the initial 5 years was 
stratified according to the number of antihyper-
tensive medications (i.e., lower adherence was 
associated with an increased number of medica-
tions).10-12 In the second scenario (worst case), 
patients stopped adhering to their medication 
regimen immediately after the initial 5-year 

period. In the third scenario (15-year best case), 
patients adhered to their medication regimen 
and had treatment effects (including those after 
a cardiovascular disease event) that persisted for 
15 years, after which all the patients immedi-
ately did not adhere to the medication regimen. 
Finally, in the fourth scenario (lifetime best 
case), patients had age-stratified SPRINT in-trial 
adherence and treatment effects that persisted 
over their remaining lifetime.

Costs

We calculated the total direct medical costs over 
the remaining lifetime of the patients. These 
costs included those associated with the inter-
vention (i.e., medications, office visits, and labo-
ratory monitoring), with acute and chronic cardio-
vascular disease events, with acute serious adverse 

Figure 1. Structure of the SPRINT Simulation Model.

Shown is the microsimulation model used to estimate costs, clinical outcomes, and quality-adjusted life-years of intensive control of 
systolic blood pressure in adults who were eligible to participate in the Systolic Blood Pressure Intervention Trial (SPRINT). (A complete 
list of the eligibility criteria for participation in SPRINT is provided in the Methods section in the Supplementary Appendix.) Panel A shows 
the two interventions — intensive control and standard control of systolic blood pressure — and health states of the patients, and Panel B 
shows the three categories of subsequent clinical events: cardiovascular disease (CVD) events, serious adverse events, and death from 
causes other than cardiovascular disease. The blue square indicates the decision node, the point at which a treatment strategy is chosen; 
the purple encircled letter “M” indicates the Markov node, with branches indicating the health states in transition every 6 months; the 
green circle indicates the chance node, after which there is a probability of the occurrence of each event; and the red triangle indicates 
the terminal node, the end of a pathway within a 6-month cycle. ACS denotes acute coronary syndrome, and MI myocardial infarction.
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Probability Source Base-Case Value Distribution

Mean Minimum Maximum

First cardiovascular disease event or death in the  
base-case scenario: primary outcome

During first 5 yr or with medication adherence 
afterward (rate per 100 person-yr)

SPRINT

Intensive control 1.65±0.52 1.23 2.30 Beta

Standard control 2.19±0.59 1.71 2.93 Beta

Hazard ratio 0.75 0.64 0.89 Log-normal

With nonadherence after first 5 yr Pooled Cohort risk 
equations†

Cardiovascular disease event

Fatal event (%) SPRINT

Intensive control 15.23±2.30 11.43 20.51 Beta

Standard control 20.38±2.25 16.46 25.30 Beta

Risk of recurrent event or death Pooled Cohort risk 
equations†

Death from noncardiovascular causes

During first 5 yr (rate per 100 person-yr) SPRINT

Intensive control 0.78±0.18 0.52 1.26 Beta

Standard control 0.96±0.20 0.66 1.49 Beta

Hazard ratio 0.81 0.64 1.03 Log-normal

After first 5 yr CDC life tables excluding 
major cardiovascular 

disease‡

Serious adverse events

Rate per 100 person-yr§ SPRINT

Intensive control 4.10±0.24 3.66 4.60 Beta

Standard control 2.88±0.20 2.51 3.30 Beta

Hazard ratio 1.43 1.26 1.62 Log-normal

Kidney disease

Chronic kidney disease (rate per 100 person-yr) SPRINT

Intensive control 1.18±0.28 0.80 1.89 Beta

Standard control 0.34±0.16 0.18 0.80 Beta

Hazard ratio 3.49 2.44 5.10 Log-normal

End-stage renal disease after chronic kidney 
disease

U.S. Renal Data System¶ 0.77±0.33 0.43 1.72 Beta

*	�Plus–minus values are means ±SD. Hazard ratios were used in the model to determine the risk with intensive control relative to standard 
control. The complete list of input values is provided in Table S1 in the Supplementary Appendix. Minimum and maximum values were 
preferentially derived from reported 95% confidence intervals or ranges or from calculated 95% confidence intervals with the use of variance 
estimates as available. CDC denotes Centers for Disease Control and Prevention, and SPRINT Systolic Blood Pressure Intervention Trial.

†	�Data for the Pooled Cohorts are from the American College of Cardiology and the American Heart Association.7

‡	�Data are from Arias et al.8

§	� Serious adverse events were those that were fatal, life-threatening, or resulted in an emergency department visit (including hypotension, 
syncope, bradycardia, electrolyte abnormality, and acute kidney injury).

¶	�Data are from the 2015 Annual Data Report of the U.S. Renal Data System.9

Table 1. Selected Input Values, Ranges, and Distributions for the SPRINT Cost-Effectiveness Model.*
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events, and with background health care for the 
treatment of noncardiovascular diseases (Tables 
S1 and S4 in the Supplementary Appendix). 
Medication costs were calculated with the use of 
a weighted average cost of generic formulary 
medications used in SPRINT, the distribution of 
prescribed medication classes in SPRINT, and 
wholesale acquisition costs.6,13 We derived the 
costs of office visits and laboratory monitoring 
from the schedules for physician and laboratory 
fees from the Centers for Medicare and Medicaid 
Services.14,15 Other costs were calculated from 
common sources and were stratified according 
to age and separated by cost type.16-18 All cost in-
puts were inflated to 2017 U.S. dollars.19 Future 
costs and QALYs were discounted at 3% annually.

Utility Values of Health States

Utility values, an overall assessment of well-being 
on a scale of 0 (death) to 1 (perfect health with-
out disability), reflect the severity of disability in 
health states. We derived utility values that were 
specific for patients’ long-term health state from 
the results on the EuroQol Group 5-Dimension 
Self-Report Questionnaire (EQ-5D) from the Med-
ical Expenditure Panel Survey for the base case 
and EQ-5D results directly measured in SPRINT 
in a scenario analysis.20 Disutility and costs were 
applied for acute cardiovascular disease events 
and acute kidney injury for 4 weeks and for 
other serious adverse events for 2 weeks.1,21,22 
After the occurrence of cardiovascular disease 
events, disutility penalties and costs were applied 
for long-term sequelae.

Model Validation

We validated the model quantitatively (i.e., com-
paring model predictions with the event rates 
that were observed in SPRINT) and by visual 
inspection (i.e., comparing cumulative incidence 
curves between SPRINT observations and model 
predictions). We compared the predicted and 
observed cumulative incidence of and hazard 
ratios for the primary outcome of a first fatal or 
nonfatal cardiovascular disease event at the me-
dian follow-up (3.3 years) in SPRINT. For longer-
term validation, we visually compared model 
predictions with the cumulative incidence of 
atherosclerotic cardiovascular disease events in 
the Framingham Heart Study cohorts.23

Sensitivity Analyses

We varied each input value in the model over a 
plausible range in one-way sensitivity analyses to 
examine the effect of uncertainty regarding in-
dividual values on the results. Scenario analyses 
examined the effect of various assumptions with 
respect to medication adherence (including self-
reported adherence, as measured in SPRINT with 
the use of an eight-item Morisky adherence 
scale24,25), a restricted time horizon, the risk of 
death from causes other than cardiovascular 
disease, the number of office and laboratory 
visits, the risk of serious adverse events, the costs 
of antihypertensive medication and background 
health care, a substitution of the characteristics 
of SPRINT-eligible adults in the general U.S. 
population,26 alternative utility estimates, and 
pill-taking disutility (i.e., the overall health state 
[utility value] of daily pill-taking) (Tables S3 and 
S5 in the Supplementary Appendix). To reassess 
cost-effectiveness in case the Pooled Cohort risk 
equations underestimated the risk of repeated 
cardiovascular disease events, we included a 
scenario that substituted a higher average risk 
of such events as predicted by the Framingham 
Recurrent Coronary Heart Disease calculator.27 
To assess whether the Pooled Cohort risk equa-
tions overestimated the risk of incident cardio-
vascular disease, we adjusted the predicted risk 
to reflect the lower average risk of cardiovascu-
lar disease of more contemporary cohorts.28 In 
probabilistic sensitivity analyses, the model was 
run 1000 times, each taking random draws 
from prespecified uncertainty distributions of all 
inputs.

Study Oversight

The authors wrote the manuscript and attest to 
the completeness and accuracy of the data and 
analysis. The manuscript was reviewed and ap-
proved by the SPRINT steering committee and 
publications subcommittee. In this study, since 
we were performing secondary analyses of dei-
dentified data, we sought no approval from 
institutional review boards. The institutional 
review board at each trial site and an indepen-
dent data and safety monitoring board re-
viewed, approved, and monitored the conduct 
of SPRINT while the original trial was being 
performed.
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R esult s

Model Validation

The microsimulation model accurately repro-
duced the risks and cumulative incidence curves 
for the primary outcome, components of the 
primary outcome, and serious adverse events in 
SPRINT during the 5-year trial period (Table S6 
and Fig. S3 in the Supplementary Appendix). 
Base-case simulated incidence rates for the 
SPRINT primary outcome at 3.3 years were 17.3 
events per 1000 person-years in the intensive-
control group and 22.2 events per 1000 person-
years in the standard-control group, as compared 
with 16.5 and 21.9 events per 1000 person-years, 
respectively, in the actual trial. The predicted 
hazard ratio for the primary outcome in the 
simulation was 0.78 (95% confidence interval 
[CI], 0.70 to 0.87), as compared with the ob-
served hazard ratio of 0.75 (95% CI, 0.64 to 
0.89). Long-term validation of the microsimula-
tion model is shown in Figure S4 in the Supple-
mentary Appendix.

Main Analysis

In the base-case scenario, in which adherence 
and treatment effects are reduced after 5 years, 
the model predicted that intensive control would 
prevent 170 incident primary outcome events 
and 190 deaths from cardiovascular disease over 
the remaining lifetime of 10,000 patients, as 
compared with standard treatment (Fig. 2A, and 
Table S7 and Figs. S5, S6, and S7 in the Supple-
mentary Appendix). In the best-case scenario, 
929 primary outcome events and 464 deaths 
from cardiovascular disease would be prevented. 
Background health care costs were the largest 
component of lifetime health care costs (Fig. 2B, 
and Table S8 and Fig. S8 in the Supplementary 
Appendix). The higher costs that were associated 
with increased survival, treatment for hyperten-
sion, and serious adverse events with intensive 
control were offset by decreased costs for the 
treatment of cardiovascular disease.

In the base case, intensive control cost ap-
proximately $47,000 more per QALY gained than 
standard control (Table 2). In 1000 probabilistic 
simulations, there was a 54% probability that 
intensive control was cost-effective at a willing-
ness-to-pay threshold of $50,000 per QALY and 
a 79% probability at a threshold of $100,000 per 
QALY. Cost-effectiveness acceptability curves are 

provided in Figure 3, and cost-effectiveness scat-
ter plots are shown in Figure S9 in the Supple-
mentary Appendix. Health gains and cost-effec-
tiveness were sensitive to whether the benefits of 
intensive control extended past the 5-year trial 
period. In the best-case scenario in which adher-
ence and treatment effects persisted over the 
patient’s lifetime, intensive control cost approxi-
mately $28,000 per QALY gained; the probability 
that intensive control was cost-effective increased 
to 79% at $50,000 per QALY and to 93% at 
$100,000 per QALY.

All post-trial persistence-of-treatment-effect 
scenarios had similar incremental cost-effective-
ness ratios (ICERs) at the end of the in-trial pe-
riod. The cost-effectiveness of intensive control 
was maximized at approximately 20 years in the 
lifetime best-case scenario and at 10 years in the 
other persistence-of-treatment-effect scenarios 
(Fig. S10 in the Supplementary Appendix). The 
estimate of the cost-effectiveness of intensive 
control was similar to the overall estimate in 
most subgroups that were examined. The excep-
tions were seen in patients who were 75 years of 
age or older, who had a more favorable ICER 
($26,000 per QALY gained); and in women and 
patients with previous cardiovascular disease, 
who had less favorable ICERs ($77,000 and 
$72,000 per QALY gained, respectively) (Table S9 
in the Supplementary Appendix).

One-Way Sensitivity and Scenario Analyses

The uncertainty ranges of individual variables 
had a small-to-moderate effect on cost-effective-
ness (ICER range, $31,000 to $69,000 per QALY) 
(Fig. S11 in the Supplementary Appendix). The 
model was most sensitive to the hazard ratio for 
cardiovascular disease events with intensive con-
trol, the risk of cardiovascular disease events with 
standard control, the risk of end-stage renal 
disease after chronic kidney disease, the hazard 
ratio for death from causes other than cardio-
vascular disease with intensive control during 
the first 5 years, and the risk of chronic kidney 
disease with standard control. Each of these fac-
tors potentially increased the ICER above $50,000 
per QALY (Fig. S11 in the Supplementary Appen-
dix). Values that were associated with renal out-
comes accounted for 4 of the 10 inputs to which 
the results were most sensitive. Variation in other 
values had little effect and resulted in ICERs that 
differed from the base-case ICER by less than 
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$10,000 per QALY. There was a small-to-moder-
ate difference between the results of 36 separate 
scenario analyses and the base-case estimate 
(ICERs of $37,000 to $76,000 per QALY). Conser-
vative values for “real world” medication adher-
ence resulted in ICERs ranging from $38,000 to 

$50,000 per QALY. When the base-case model 
was populated with a cohort representing the 
characteristics of SPRINT-eligible U.S. adults in 
the general population, the ICER was $46,000 
per QALY (Table S10 in the Supplementary Ap-
pendix).

Figure 2. Incidence Rate Ratios for the Primary Outcome and Incremental Direct Medical Costs for Intensive versus 
Standard Control, According to Four Scenarios for Medication Adherence and Treatment Effect.

Panel A shows incidence rate ratios for the SPRINT primary outcome (the first occurrence of myocardial infarction, 
acute coronary syndrome not resulting in myocardial infarction, stroke, heart failure, or death from cardiovascular 
causes) for intensive control versus standard control of systolic blood pressure during the simulation over different 
time periods. The results are shown according to the four post-trial persistence-of-treatment-effect scenarios: base 
case (i.e., reduced adherence to the medication regimen and treatment effects after 5 years until total nonadher‑
ence and no treatment effects at 15 years), worst case (i.e., nonadherence and no treatment effects after 5 years), 
best case until 15 years (i.e., in-trial adherence and persistence of treatment effects for 15 years), and lifetime best 
case (i.e., lifetime in-trial adherence and persistence of treatment effects). Although the assumptions and input 
were identical for all four scenarios for the first 5 years of the simulation, there were small differences in the inci‑
dence rate ratios for cardiovascular disease events for the period from 0 to 5 years that reflect the role of chance in 
the microsimulation approach. The I bars indicate 95% confidence intervals. Panel B shows the range of mean cu‑
mulative incremental direct medical costs of intensive control versus standard control of systolic blood pressure, 
according to the expenditure — including costs associated with serious adverse events, treatment, background 
health care for the treatment of noncardiovascular diseases, chronic cardiovascular disease (CVD), or CVD event  
— in the four post-trial persistence-of-treatment-effect scenarios over time.
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Discussion

We found that intensive systolic blood-pressure 
control among adults at high risk for cardiovas-
cular disease was cost-effective and below com-
mon U.S. willingness-to-pay thresholds in most 
simulations (51 to 79% below $50,000 per 
QALY29,30 and 76 to 93% below $100,000 per 
QALY), regardless of whether the benefits were 
reduced after 5 years or persisted for the remain-
ing lifetime of the patient. Intensive control en-
tailed more frequent office visits, laboratory tests, 
and greater medication use than did standard 
control, and such factors were costly early on. 
However, these costs were balanced by health 
gains from prevented cardiovascular disease 
events and deaths. The predicted cost-effective-
ness was maximized after approximately 10 to 
20 years of treatment. Since our analysis time 
horizon extended beyond the SPRINT observation 
period to evaluate the potential value of lifetime 
intensive control, we accounted for a plausible 
range of possible treatment effects during the 
post-trial period, medication adherence, and 
risks of serious adverse events in the assessment 
of cost-effectiveness.

In two previous cost-effectiveness analyses, 
the investigators projected that intensive control 
of blood pressure would be cost-effective among 
U.S. adults at high risk for cardiovascular dis-
ease.31,32 Moise and colleagues estimated more 
favorable ICERs for intensive control than for 
standard control among U.S. adults at high car-
diovascular risk, but they did not define a high 
risk of cardiovascular disease strictly according 
to SPRINT eligibility criteria; in addition, they 
simulated only a 10-year time horizon and did 
not account for the costs of treating noncardio-
vascular diseases in their cost-effectiveness cal-
culations.31 Richman et al. used a lifetime hori-
zon, with their main cost-effectiveness estimate 
of approximately $24,000 per QALY gained, which 
was presumably based on lifetime persistence of 
the benefits of intensive control as defined in 
SPRINT.32 Our base case assumed a reduction in 
treatment effects over time on the basis of stan-
dard practice for cost-effectiveness analysis of 
clinical trials. If we assume similar conditions 
to those in the analysis by Richman et al. (apart 
from allowing for repeated cardiovascular disease 
events), our model showed an ICER of approxi-
mately $37,000 per QALY gained. As opposed to Ta
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the Richman et al. approach, in which the par-
ticipants reverted to the standard-control group 
after a first cardiovascular disease event, we kept 
participants in their assigned treatment group 
after a first event, a method that was consistent 
with the SPRINT intention-to-treat design. When 
Richman et al. restricted the benefits that were 
reported in SPRINT to the median follow-up 
period in SPRINT (3.3 years), intensive control 
resulted in an ICER of approximately $35,000, a 
finding that was consistent with our results 
when we restricted benefits to 5 years (with an 
ICER of approximately $41,000 per QALY gained) 
(Fig. S10 in the Supplementary Appendix).

Approximately 17 million U.S. adults meet 
SPRINT eligibility criteria and stand to benefit 
from intensive control of systolic blood pres-
sure.26,33 Recent hypertension guidelines from 
Canada and Australia incorporated evidence 
from SPRINT and recommended the consider-
ation of intensive control in selected patients 
who are at high risk for cardiovascular disease, 
with close follow-up for serious adverse events.34,35 
An ACC–AHA statement recommended that 
clinical-practice guidelines integrate cost-effec-
tiveness assessments such as ours.29 Our study 
contributes to the formulation of hypertension 
guidelines by showing the potential lifetime ben-
efits and cost-effectiveness of intensive control 
of systolic blood pressure incremental to stan-
dard control among high-risk patients. Our re-
sults suggest that the maximized cost-effective-
ness of intensive control depends on extending 
treatment beyond 5 years. Research is needed on 
ways to implement and sustain protocols for in-
tensive control for patients who are most likely to 
benefit.

This analysis was based on effectiveness, the 
risk of serious adverse events, medication adher-
ence, and quality-of-life data gathered in SPRINT 
and adhered to standards for cost-effectiveness 
analyses (Tables S11 and S12 in the Supplemen-
tary Appendix).36,37 There were several limitations. 
Our simulations represent a range of hypotheti-
cal treatment effects projected beyond the SPRINT 
trial period, since long-term data on treatment 
effects of intensive control versus standard con-
trol beyond the end of the trial are not available. 
Methods of blood-pressure measurement in most 
current clinical practices differ from the auto-
mated blood-pressure approach used in SPRINT. 
This issue did not come into play in our analysis, 

since the effects of intensive control were mod-
eled as relative risks of outcomes and not as 
changes in systolic blood pressure. The bene-
fits that were observed in SPRINT are consis-
tent with aggregate evidence supporting bene-
fits of intensive control among patients at high 
risk for cardiovascular disease.38-40 However, 
because SPRINT excluded patients with a history 
of diabetes, stroke, or heart failure, our results 
should be extended only with caution to such 
patients.2,3

Although there was no significant difference 
in the rate of combined serious adverse events 
between the intensive-control group and the 
standard-control group in SPRINT, we conserva-
tively modeled the risk of specific outcomes that 
were classified as serious adverse events or as 
resulting in an emergency department visit. 
Nonetheless, the risks of serious adverse events 
that were observed in SPRINT may not represent 
such risks that would be expected if patients 
who are treated in the community underwent 
intensive control. We estimated that the underly-
ing risks of serious adverse events in the two 
study groups would need to be 2.75 times the 
risks observed in SPRINT or that the risks of 

Figure 3. Probability of Cost-Effectiveness of Intensive versus Standard 
Blood-Pressure Control.

Shown is the probability of the cost-effectiveness of intensive control of 
systolic blood pressure, as compared with standard control, according to  
a range of willingness-to-pay thresholds (the cost in dollars per quality-
adjusted life-year [QALY]). The curves represent the four post-trial persis‑
tence-of-treatment-effect scenarios. The curves were generated from the 
results of the probabilistic analysis in which the model was run 1000 times 
with the use of random draws for all model measurements to capture joint 
uncertainty in the model results.

Pr
ob

ab
ili

ty
 o

f C
os

t-
Ef

fe
ct

iv
en

es
s

of
 In

te
ns

iv
e 

C
on

tr
ol

1.0

0.8

0.9

0.7

0.6

0.4

0.3

0.1

0.5

0.2

0.0
0 25,000 50,000 75,000 100,000 125,000 150,000

Willingness-to-Pay Threshold (cost in dollars/QALY)

Base case
Worst case

Best case (15 yr)
Best case (lifetime)

The New England Journal of Medicine 
Downloaded from nejm.org at University at Buffalo Libraries on September 7, 2017. For personal use only. No other uses without permission. 

 Copyright © 2017 Massachusetts Medical Society. All rights reserved. 



n engl j med 377;8  nejm.org  August 24, 2017754

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

serious adverse events in the intensive-control 
group would need to be 1.64 times the risk in 
the standard-control group to push the ICER for 
intensive control above $50,000 per QALY (Figs. 
S12 and S13 in the Supplementary Appendix). 
When we assumed that there was no between-
group difference in the risk of combined serious 
adverse events (i.e., the overall result in SPRINT), 
the ICER was even lower ($34,000 per QALY for 
the base case) (Fig. S13 in the Supplementary 
Appendix).

In conclusion, in this simulation study, we 
found that intensive control of systolic blood 
pressure prevented cardiovascular disease events 
and prolonged life and did so at a cost that was 
below common willingness-to-pay thresholds, 
regardless of whether the benefits were reduced 
after 5 years or persisted for the remaining life-
time of the patient.
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